Online courses directory (423)
Biochemistry is the study of the chemical processes and compounds, such as cellular makeup, that bring about life in organisms. It is a combination of multiple science fields; you can think of it as general and cell biology coupled with organic and general chemistry. Although living organisms are very complex, from a molecular view, the material that constitutes “life” can be broken down into remarkably simple molecules, much like the breakdown of our English language to the English alphabet. Although there exists thousands upon thousands of molecules, they all breakdown into four core components: nucleic acids, amino acids, lipids, and carbohydrates. As we can make hundreds of thousands of words from just 26 letters, we can make thousands of different biomolecules from those 4 components. For example, the human genome, containing the necessary information to create a human being, is really just one very long strand of 4 different nucleotides. This course is structured around that approach, so…
The purpose of this course is to explore the subject of human disease, placing special emphasis on the cause of disease at the tissue level. We will pay close attention to the underlying mechanisms that initiate and perpetuate the disease state. Much can be learned about the causes of disease at the molecular and cellular level; we will accordingly spend quite a bit of time examining molecules, cells, and tissues and determining how the disruption of their normal functioning by various known and unknown causes can lead to disease. We will begin this course with a basic review of molecules, cells, and tissues in the human body. We will then discuss the body’s first line of defense, the inflammatory reaction, and the immune system. Finally, we will survey the body’s organ systems. We will approach each of the systems by examining the ways in which a prototype disease impacts its functioning. (These “prototypes” will be diseases that impact a large number of patients around the world.) We…
Biotechnology is the application of biology and biological concepts to science and engineering. It is the crossroad of the biological sciences with other major disciplines of science, from organic chemistry to mechanical engineering. The earliest applications of biotechnology involve people of ancient civilizations using organisms to create bread and wine. The discovery of the Penicillium mold to combat infection is another famous example, as its production involved a specially designed fermentation process using microorganisms. Nowadays, scientists use almost all aspects of biology in their applications, from DNA to protein to cellular organelles. Living organisms, especially microorganisms, are thought of as biochemical machinery, able to be edited and changed to create new purposes. We could program them to create insulin for diabetes patients or to produce fuel for our cars. Biotechnology is nearly limitless in its applications. As biotechnology is a very diverse topic, this course will in…
Cancer has existed among humans since humans themselves began and has been a subject of urgent interest from very early in our history. What we call “cancer” consists of a number of different diseases with one fundamental similarity: they are all initiated by the unchecked proliferation and growth of cells in which the pathways and systems that normally control cell division and mortality are absent. Cancer-cell abnormalities are often due to mutations of the genes that control the cell cycle and cell growth. To understand cancer cells, then, one must first understand the processes that regulate normal cell cycles. This course will cover the origins of cancer and the genetic and cellular basis for cancer. It will examine the factors that have been implicated in triggering cancers; the intercellular interactions involved in cancer proliferation; current treatments for cancer and how these are designed; and future research and treatment directions for cancer therapy.
The advent of computers transformed science. Large, complicated datasets that once took researchers years to manually analyze could suddenly be analyzed within a week using computer software. Nowadays, scientists can use computers to produce several hypotheses as to how a particular phenomenon works, create computer models using the parameters of each hypothesis, input data, and see which hypothetical model produces an output that most closely mirrors reality. Computational biology refers to the use of computers to automate data analysis or model hypotheses in the field of biology. With computational biology, researchers apply mathematics to biological phenomena, use computer programming and algorithms to artificially create or model the phenomena, and draw from statistics in order to interpret the findings. In this course, you will learn the basic principles and procedures of computational biology. You will also learn various ways in which you can apply computational biology to molecular and cell…
In this course, you will study microscopic anatomy. The study of the structure of a cell, tissue, organ, or related feature is known as anatomy. Gross anatomy (or macroscopic anatomy) involves examining anatomical structures that can be seen with the naked eye, whereas microscopic anatomy is the examination of minute anatomical structures that cannot be observed without the help of visual enhancement, such as a microscope. The terms microscopic anatomy and histology (the study of microscopic structure of animal and plant tissue) are used interchangeably. Many times it will be necessary to survey gross anatomy so that when you focus in on the microscopic anatomy you will have a geographical idea of the location within the body. This course makes use of microscope slides of anatomical structures to aid in the discussions of anatomy. Unit 1 begins with an overview of basic cell structure. The study of cells is known as cytology. Cells contain numerous structures that can only be seen with the aid of specialize…
Immunology is the study of our immune system, a highly sophisticated system that defends us against all disease-causing invaders by identifying and neutralizing such threats. Even though we might get sick every now and then, the immune system does an incredible job of warding off infection given how many infectious agents (thousands!) we come into contact with every day. This becomes most apparent when a healthy individual compares himself or herself to an individual with little or no immune response who cannot survive in a normal environment and must rely on specialized rooms much cleaner than even a surgery room. Before the discovery of immunity, we used to associate sickness and disease with various superstitions and beliefs. Only with the discovery of bacteria, viruses, and our own cells did scientists slowly piece together the modern theory of our immune system. Our overall system can be broken down into two sub-systems, each with its own unique cells, molecules, and functions. Our cells are in turn capa…
Physics 101 is the first course in the Introduction to Physics sequence. In general, the quest of physics is to develop descriptions of the natural world that correspond closely to actual observations. Given this definition, the story behind everything in the universe is one of physics. In practice, the field of physics is more often limited to the discovery and refinement of the basic laws that underlie the behavior of matter and energy. While biology is founded upon physics, in practice, the study of biology generally assumes that the present understanding of physical laws is accurate. Chemistry is more closely dependent on physics and assumes that physical laws provide accurate predictions. Engineering, for the most part, is applied physics. In this course, we will study physics from the ground up, learning the basic principles of physical laws, their application to the behavior of objects, and the use of the scientific method in driving advances in this knowledge. This first course o…
This course explores the diversity of the foods we eat, the ways in which we grow, process, distribute, and prepare them, and the impacts they have upon our environment, health, and society. We will also examine the challenges and opportunities of creating a more sustainable global food system in the future.
Learn about the impact of infectious disease on sustainable animal-based food production by understanding the science of growth, immunity, and infection and by learning the problem-solving skills needed to advance animal health and food production through optimal management practices.
This course is about how the brain creates our sense of spatial location from a variety of sensory and motor sources, and how this spatial sense in turn shapes our cognitive abilities. ***April 2016 Update: The course materials can be accessed by selecting the "September 1 2015" session from the "Sessions" menu.***
The physics of the Universe appears to be dominated by the effects of four fundamental forces: gravity, electromagnetism, and weak and strong nuclear forces. These control how matter, energy, space, and time interact to produce our physical world. All other forces, such as the force you exert in standing up, are ultimately derived from these fundamental forces. We have direct daily experience with two of these forces: gravity and electromagnetism. Consider, for example, the everyday sight of a person sitting on a chair. The force holding the person on the chair is gravitational, while that gravitational force is balanced by material forces that “push up” to keep the individual in place, and these forces are the direct result of electromagnetic forces on the nanoscale. On a larger stage, gravity holds the celestial bodies in their orbits, while we see the Universe by the electromagnetic radiation (light, for example) with which it is filled. The electromagnetic force also makes possible the a…
This course is designed to introduce you to the study of Calculus. You will learn concrete applications of how calculus is used and, more importantly, why it works. Calculus is not a new discipline; it has been around since the days of Archimedes. However, Isaac Newton and Gottfried Leibniz, two 17th-century European mathematicians concurrently working on the same intellectual discovery hundreds of miles apart, were responsible for developing the field as we know it today. This brings us to our first question, what is today's Calculus? In its simplest terms, calculus is the study of functions, rates of change, and continuity. While you may have cultivated a basic understanding of functions in previous math courses, in this course you will come to a more advanced understanding of their complexity, learning to take a closer look at their behaviors and nuances. In this course, we will address three major topics: limits, derivatives, and integrals, as well as study their respective foundations and a…
This course is the second installment of Single-Variable Calculus. In Part I (MA101) [1], we studied limits, derivatives, and basic integrals as a means to understand the behavior of functions. In this course (Part II), we will extend our differentiation and integration abilities and apply the techniques we have learned. Additional integration techniques, in particular, are a major part of the course. In Part I, we learned how to integrate by various formulas and by reversing the chain rule through the technique of substitution. In Part II, we will learn some clever uses of substitution, how to reverse the product rule for differentiation through a technique called integration by parts, and how to rewrite trigonometric and rational integrands that look impossible into simpler forms. Series, while a major topic in their own right, also serve to extend our integration reach: they culminate in an application that lets you integrate almost any function you’d like. Integration allows us to calculat…
This chemistry survey is designed to introduce students to the world of chemistry. The principles of chemistry were first identified, studied, and applied by ancient Egyptians in order to extract metal from ores, make alcoholic beverages, glaze pottery, turn fat into soap, and much more. What began as a quest to build better weapons or create potions capable of ensuring everlasting life has since become the foundation of modern science. Take a look around you: chemistry makes up almost everything you touch, see, and feel, from the shampoo you used this morning to the plastic container that holds your lunch. In this course, we will study chemistry from the ground up, learning the basics of the atom and its behavior. We will use this knowledge to understand the chemical properties of matter and the changes and reactions that take place in all types of matter.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.