Online courses directory (273)
In 16.89 / ESD.352 the students will first be asked to understand the key challenges in designing ground and space telescopes, the stakeholder structure and value flows, and the particular pros and cons of the proposed project. The first half of the class will concentrate on performing a thorough architectural analysis of the key astrophysical, engineering, human, budgetary and broader policy issues that are involved in this decision. This will require the students to carry out a qualitative and quantitative conceptual study during the first half of the semester and recommend a small set of promising architectures for further study at the Preliminary Design Review (PDR).
Both lunar surface telescopes as well as orbital locations should be considered.
The second half of the class will then pick 1-2 of the top-rated architectures for a lunar telescope facility and develop the concept in more detail and present the detailed design at the Critical Design Review (CDR). This should not only sketch out the science program, telescope architecture and design, but also the stakeholder relationships, a rough estimate of budget and timeline, and also clarify the role that human explorers could or should play during both deployment and servicing/operations of such a facility (if any).
This course explores the theory of self-assembly in surfactant-water (micellar) and surfactant-water-oil (micro-emulsion) systems. It also introduces the theory of polymer solutions, as well as scattering techniques, light, x-ray, and neutron scattering applied to studies of the structure and dynamics of complex liquids, and modern theory of the liquid state relevant to structured (supramolecular) liquids.
The major themes of this course are estimation and control of dynamic systems. Preliminary topics begin with reviews of probability and random variables. Next, classical and state-space descriptions of random processes and their propagation through linear systems are introduced, followed by frequency domain design of filters and compensators. From there, the Kalman filter is employed to estimate the states of dynamic systems. Concluding topics include conditions for stability of the filter equations.
Applies solid mechanics to analysis of high-technology structures. Structural design considerations. Review of three-dimensional elasticity theory; stress, strain, anisotropic materials, and heating effects. Two-dimensional plane stress and plane strain problems. Torsion theory for arbitrary sections. Bending of unsymmetrical section and mixed material beams. Bending, shear, and torsion of thin-wall shell beams. Buckling of columns and stability phenomena. Introduction to structural dynamics. Exercises in the design of general and aerospace structures.
This course deals with structural components in nuclear power plant systems, their functional purposes, operating conditions, and mechanical-structural design requirements. It combines mechanics techniques with models of material behavior to determine adequacy of component design. Considerations include mechanical loading, brittle fracture, in-elastic behavior, elevated temperatures, neutron irradiation, and seismic effects.
This course focuses on one important engineering application of superconductors -- the generation of large-scale and intense magnetic fields. It includes a review of electromagnetic theory; detailed treatment of magnet design and operational issues, including "usable" superconductors, field and stress analyses, magnet instabilities, ac losses and mechanical disturbances, quench and protection, experimental techniques, and cryogenics. The course also examines new high-temperature superconductors for magnets, as well as design and operational issues at high temperatures.
Here is your chance to change the course of history! In this eight-week experience, you will begin developing profitable social and technological innovations to tackle our pressing energy and climate obligations. Course content includes videos and short readings carefully selected and organized to be accessible to a wide audience regardless of nationality, educational background, professional interests, or academic focus. All of the assigned work in this course is designed to help you dream up and begin developing your own sustainable energy innovation. Your innovation may be a physical product, or a service. It may be a technical innovation, or a social one. It need not make you rich, but you will be challenged to at least make your project self-supporting. The course materials, my feedback, and, most importantly, interactions with your classmates, will all help as you try to make your ideas real. You can complete the coursework in two to four hours per week, and any additional time you spend will just improve the chances your project is successful. Students should have completed the Intro to Sustainable Energy course on Canvas Network, or something similar, prior to taking this course. The "Introduction" course is publicly viewable with a CC Attribution Non-Commercial Share Alike license.
This course covers important concepts and techniques in designing and operating safety-critical systems. Topics include the nature of risk, formal accident and human error models, causes of accidents, fundamental concepts of system safety engineering, system and software hazard analysis, designing for safety, fault tolerance, safety issues in the design of human-machine interaction, verification of safety, creating a safety culture, and management of safety-critical projects. Includes a class project involving the high-level system design and analysis of a safety-critical system.
This course provides an in-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, reprocessing and waste disposal. Also covered are the principles of fuel cycle economics and the applied reactor physics of both contemporary and proposed thermal and fast reactors. Nonproliferation aspects, disposal of excess weapons plutonium, and transmutation of actinides and selected fission products in spent fuel are examined. Several state-of-the-art computer programs are provided for student use in problem sets and term papers.
This course introduces analysis techniques for complex structures and the role of material properties in structural design, failure, and longevity. Students will learn about the energy principles in structural analysis and their applications to statically-indeterminate structures and solid continua. Additionally, the course will examine matrix and finite-element methods of structured analysis including bars, beams, and two-dimensional plane stress elements. Structural materials and their properties will be considered, as will metals and composites. Other topics include modes of structural failure, criteria for yielding and fracture, crack formation and fracture mechanics, and fatigue and design for longevity. Students are expected to apply these concepts to their own structural design projects.
This course provides an introduction to the transportation industry's major technical challenges and considerations. For upper level undergraduates interested in learning about the transportation field in a broad but quantitative manner. Topics include road vehicle engineering, internal combustion engines, batteries and motors, electric and hybrid powertrains, urban and high speed rail transportation, water vessels, aircraft types and aerodynamics, radar, navigation, GPS, GIS. Students will complete a project on a subject of their choosing.
This course meets weekly to discuss recent aerospace history and current events, in order to understand how they are responsible for the state of the aerospace industry. With invited subject matter experts participating in nearly every session, students have an opportunity to hone their insight through truly informed discussion. The aim of the course is to prepare junior and senior level students for their first industry experiences.
The course will provide an overview of the knowledge acquired during the past 20 years in the domain of exoplanets. It will review the different detection methods, their limitations, and the information provided on the orbital system and the planet itself, and how this information is helping our understanding of planet formation.
Numerous recent studies have shown that the U.S. has relatively low percentages of students who enter science and engineering and a high drop-out rate. Some other countries are producing many more scientists and engineers per capita than the U.S. What does this mean for the future of the U.S. and the global economy?
In this readings and discussion-based seminar you will meet weekly with the Dean of Undergraduate Education to explore the kind of education MIT and other institutions are and should be giving. Based on data from National Academy and other reports, along with what pundits have been saying, we'll see if we can decide how much the U.S. may or may not be at risk.
This is an introductory astronomy survey class that covers our understanding of the physical universe and its major constituents, including planetary systems, stars, galaxies, black holes, quasars, larger structures, and the universe as a whole. We will learn how modern astronomical observations and applications of physics we know from the planet Earth reveal the nature of these objects and explain their observed properties, and tell us how they form and evolve. We will also examine various cosmic phenomena, from variable or exploding stars to the expansion of the universe and the evidence for dark matter, dark energy, and the big bang. The universe as a whole and all of its major constituents are evolving, and we now have a fairly complete and consistent picture of these processes that is based on the objective evidence from observations and the laws of physics. The goal of this class is both to learn about the fascinating objects and phenomena that populate the universe, and to understand how we know all that.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.