Online courses directory (684)
This course will discuss the major ideas used today in the implementation of programming language compilers. You will learn how a program written in a high-level language designed for humans is systematically translated into a program written in low-level assembly more suited to machines!
This course studies basic optimization and the principles of optimal control. It considers deterministic and stochastic problems for both discrete and continuous systems. The course covers solution methods including numerical search algorithms, model predictive control, dynamic programming, variational calculus, and approaches based on Pontryagin's maximum principle, and it includes many examples and applications of the theory.
This course is an introduction to the design, analysis, and fundamental limits of wireless transmission systems. Topics to be covered include: wireless channel and system models; fading and diversity; resource management and power control; multiple-antenna and MIMO systems; space-time codes and decoding algorithms; multiple-access techniques and multiuser detection; broadcast codes and precoding; cellular and ad-hoc network topologies; OFDM and ultrawideband systems; and architectural issues.
This course examines how randomization can be used to make algorithms simpler and more efficient via random sampling, random selection of witnesses, symmetry breaking, and Markov chains. Topics covered include: randomized computation; data structures (hash tables, skip lists); graph algorithms (minimum spanning trees, shortest paths, minimum cuts); geometric algorithms (convex hulls, linear programming in fixed or arbitrary dimension); approximate counting; parallel algorithms; online algorithms; derandomization techniques; and tools for probabilistic analysis of algorithms.
In keeping with the tradition of the last twenty-some years, the Readings in Optimization seminar will focus on an advanced topic of interest to a portion of the MIT optimization community: randomized methods for deterministic optimization. In contrast to conventional optimization algorithms whose iterates are computed and analyzed deterministically, randomized methods rely on stochastic processes and random number/vector generation as part of the algorithm and/or its analysis. In the seminar, we will study some very recent papers on this topic, many by MIT faculty, as well as some older papers from the existing literature that are only now receiving attention.
With the growing availability and lowering costs of genotyping and personal genome sequencing, the focus has shifted from the ability to obtain the sequence to the ability to make sense of the resulting information. This course is aimed at exploring the computational challenges associated with interpreting how sequence differences between individuals lead to phenotypic differences in gene expression, disease predisposition, or response to treatment.
20th century solutions to new problems in Cryptography. The Fundamental Theorem of Arithmetic. Public Key Cryptography: what is it?. The Discrete Logarithm Problem. Diffie-Hellman Key Exchange. RSA Encryption: step 1. RSA Encryption: step 2. RSA Encryption: step 3. Euler's Totient Function. RSA Encryption: step 4. What should we learn next?.
This course is a broad introduction to a host of sensor technologies, illustrated by applications drawn from human-computer interfaces and ubiquitous computing. After extensively reviewing electronics for sensor signal conditioning, the lectures cover the principles and operation of a variety of sensor architectures and modalities, including pressure, strain, displacement, proximity, thermal, electric and magnetic field, optical, acoustic, RF, inertial, and bioelectric. Simple sensor processing algorithms and wired and wireless network standards are also discussed. Students are required to complete written assignments, a set of laboratories, and a final project.
This seminar is intended for doctoral students and discusses topics in applied probability. This semester includes a variety of fields, namely statistical physics (local weak convergence and correlation decay), artificial intelligence (belief propagation algorithms), computer science (random K-SAT problem, coloring, average case complexity) and electrical engineering (low density parity check (LDPC) codes).
One objective of 15.066J is to introduce modeling, optimization and simulation, as it applies to the study and analysis of manufacturing systems for decision support. The introduction of optimization models and algorithms provide a framework to think about a wide range of issues that arise in manufacturing systems. The second objective is to expose students to a wide range of applications for these methods and models, and to integrate this material with their introduction to operations management.
6.896 covers mathematical foundations of parallel hardware, from computer arithmetic to physical design, focusing on algorithmic underpinnings. Topics covered include: arithmetic circuits, parallel prefix, systolic arrays, retiming, clocking methodologies, boolean logic, sorting networks, interconnection networks, hypercubic networks, P-completeness, VLSI layout theory, reconfigurable wiring, fat-trees, and area-time complexity.
This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5511 (Theory of Parallel Hardware).
In this graduate-level course, we will be covering advanced topics in combinatorial optimization. We will start with non-bipartite matchings and cover many results extending the fundamental results of matchings, flows and matroids. The emphasis is on the derivation of purely combinatorial results, including min-max relations, and not so much on the corresponding algorithmic questions of how to find such objects. The intended audience consists of Ph.D. students interested in optimization, combinatorics, or combinatorial algorithms.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.