Online courses directory (418)
This graduate level mathematics course covers decision theory, estimation, confidence intervals, and hypothesis testing. The course also introduces students to large sample theory. Other topics covered include asymptotic efficiency of estimates, exponential families, and sequential analysis.
In this course, we study elliptic Partial Differential Equations (PDEs) with variable coefficients building up to the minimal surface equation. Then we study Fourier and harmonic analysis, emphasizing applications of Fourier analysis. We will see some applications in combinatorics / number theory, like the Gauss circle problem, but mostly focus on applications in PDE, like the Calderon-Zygmund inequality for the Laplacian, and the Strichartz inequality for the Schrodinger equation. In the last part of the course, we study solutions to the linear and the non-linear Schrodinger equation. All through the course, we work on the craft of proving estimates.
This course introduces students to iterative decoding algorithms and the codes to which they are applied, including Turbo Codes, Low-Density Parity-Check Codes, and Serially-Concatenated Codes. The course will begin with an introduction to the fundamental problems of Coding Theory and their mathematical formulations. This will be followed by a study of Belief Propagation--the probabilistic heuristic which underlies iterative decoding algorithms. Belief Propagation will then be applied to the decoding of Turbo, LDPC, and Serially-Concatenated codes. The technical portion of the course will conclude with a study of tools for explaining and predicting the behavior of iterative decoding algorithms, including EXIT charts and Density Evolution.
This course introduces the basic computational methods used to understand the cell on a molecular level. It covers subjects such as the sequence alignment algorithms: dynamic programming, hashing, suffix trees, and Gibbs sampling. Furthermore, it focuses on computational approaches to: genetic and physical mapping; genome sequencing, assembly, and annotation; RNA expression and secondary structure; protein structure and folding; and molecular interactions and dynamics.
This course provides an elementary introduction to probability and statistics with applications. Topics include: basic combinatorics, random variables, probability distributions, Bayesian inference, hypothesis testing, confidence intervals, and linear regression.
The Spring 2014 version of this subject employed the residential MITx system, which enables on-campus subjects to provide MIT students with learning and assessment tools such as online problem sets, lecture videos, reading questions, pre-lecture questions, problem set assistance, tutorial videos, exam review content, and even online exams.
This course provides students with the basic analytical and computational tools of linear partial differential equations (PDEs) for practical applications in science engineering, including heat / diffusion, wave, and Poisson equations. Analytics emphasize the viewpoint of linear algebra and the analogy with finite matrix problems. Numerics focus on finite-difference and finite-element techniques to reduce PDEs to matrix problems. The Julia Language (a free, open-source environment) is introduced and used in homework for simple examples.
This graduate-level course is an advanced introduction to applications and theory of numerical methods for solution of differential equations. In particular, the course focuses on physically-arising partial differential equations, with emphasis on the fundamental ideas underlying various methods.
This course introduces students to probability and random variables. Topics include distribution functions, binomial, geometric, hypergeometric, and Poisson distributions. The other topics covered are uniform, exponential, normal, gamma and beta distributions; conditional probability; Bayes theorem; joint distributions; Chebyshev inequality; law of large numbers; and central limit theorem.
This course, which is geared toward Freshmen, is an undergraduate seminar on mathematical problem solving. It is intended for students who enjoy solving challenging mathematical problems and who are interested in learning various techniques and background information useful for problem solving. Students in this course are expected to compete in a nationwide mathematics contest for undergraduates.
This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include vectors and matrices, partial derivatives, double and triple integrals, and vector calculus in 2 and 3-space.
MIT OpenCourseWare offers another version of 18.02, from the Spring 2006 term. Both versions cover the same material, although they are taught by different faculty and rely on different textbooks. Multivariable Calculus (18.02) is taught during the Fall and Spring terms at MIT, and is a required subject for all MIT undergraduates.
This course covers differential, integral and vector calculus for functions of more than one variable. These mathematical tools and methods are used extensively in the physical sciences, engineering, economics and computer graphics.
Course Formats
The materials have been organized to support independent study. The website includes all of the materials you will need to understand the concepts covered in this subject. The materials in this course include:
- Lecture Videos recorded on the MIT campus
- Recitation Videos with problem-solving tips
- Examples of solutions to sample problems
- Problem for you to solve, with solutions
- Exams with solutions
- Interactive Java Applets ("Mathlets") to reinforce key concepts
Content Development
Denis Auroux
Arthur Mattuck
Jeremy Orloff
John Lewis
18.311 Principles of Continuum Applied Mathematics covers fundamental concepts in continuous applied mathematics, including applications from traffic flow, fluids, elasticity, granular flows, etc. The class also covers continuum limit; conservation laws, quasi-equilibrium; kinematic waves; characteristics, simple waves, shocks; diffusion (linear and nonlinear); numerical solution of wave equations; finite differences, consistency, stability; discrete and fast Fourier transforms; spectral methods; transforms and series (Fourier, Laplace). Additional topics may include sonic booms, Mach cone, caustics, lattices, dispersion, and group velocity.
This course provides an introduction to the theory and practice of quantum computation. Topics covered include: physics of information processing, quantum logic, quantum algorithms including Shor's factoring algorithm and Grover's search algorithm, quantum error correction, quantum communication, and cryptography.
18.104 is an undergraduate level seminar for mathematics majors. Students present and discuss subject matter taken from current journals or books. Instruction and practice in written and oral communication is provided. The topics vary from year to year. The topic for this term is Applications to Number Theory.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.