Online courses directory (418)
“Everything is numbers.” This phrase was uttered by the lead character, Dr. Charlie Epps, on the hit television show “NUMB3RS.” If everything has a mathematical underpinning, then it follows that everything is somehow mathematically connected, even if it is only in some odd, “six degrees of separation (or Kevin Bacon)” kind of way. Geometry is the study of space (for now, mainly two-dimensional, with some three-dimensional thrown in) and the relationships of objects contained inside. It is one of the more relatable math courses, because it often answers that age-old question, “When am I ever going to use this in real life?” Look around you right now. Do you see any triangles? Can you spot any circles? Do you see any books that look like they are twice the size of other books? Does your wall have paint on it? In geometry, you will explore the objects that make up our universe. Most people never give a second thought to how things are constructed, but there are geometric ru…
Prepare for the College Mathematics CLEP Exam through Education Portal's brief video lessons on mathematics. This course covers topics ranging from real number systems to probability and statistics. You'll learn to use the midpoint and distance formulas, graph inequalities and multiply binomials. You'll also explore the properties of various shapes and learn to determine their area and perimeter. Our lessons are taught by professional educators with experience in mathematics. In addition to designing the videos in this course, these educators have developed written transcripts and self-assessment quizzes to round out your learning experience.
Prepare for the College Mathematics CLEP Exam through Education Portal's brief video lessons on mathematics. This course covers topics ranging from real number systems to probability and statistics. You'll learn to use the midpoint and distance formulas, graph inequalities and multiply binomials. You'll also explore the properties of various shapes and learn to determine their area and perimeter. Our lessons are taught by professional educators with experience in mathematics. In addition to designing the videos in this course, these educators have developed written transcripts and self-assessment quizzes to round out your learning experience.
Students often encounter grave difficulty in calculus if their algebraic knowledge is insufficient. This course is designed to provide students with algebraic knowledge needed for success in a typical calculus course. We explore a suite of functions used in calculus, including polynomials (with special emphasis on linear and quadratic functions), rational functions, exponential functions, and logarithmic functions. Along the way, basic strategies for solving equations and inequalities are reinforced, as are strategies for interpreting and manipulating a variety of algebraic expressions. Students enrolling in the course are expected to have good number sense and to have taken an intermediate algebra course.
Prepare for the College Mathematics CLEP Exam through Education Portal's brief video lessons on mathematics. This course covers topics ranging from real number systems to probability and statistics. You'll learn to use the midpoint and distance formulas, graph inequalities and multiply binomials. You'll also explore the properties of various shapes and learn to determine their area and perimeter. Our lessons are taught by professional educators with experience in mathematics. In addition to designing the videos in this course, these educators have developed written transcripts and self-assessment quizzes to round out your learning experience.
This is an introduction to predicate logic and how it is applied in computer science, electronic engineering, linguistics, mathematics and philosophy. Building on your knowledge of propositional logic, you will learn predicate logic—its language, interpretations and proofs, and apply it to solve problems in a wide range of disciplines.
Mathematical Methods for Quantitative Finance covers topics from calculus and linear algebra that are fundamental for the study of mathematical finance. Students successfully completing this course will be mathematically well prepared to study quantitative finance at the graduate level.
Precalculus I is designed to prepare you for Precalculus II, Calculus, Physics, and higher math and science courses. In this course, the main focus is on five types of functions: linear, polynomial, rational, exponential, and logarithmic. In accompaniment with these functions, you will learn how to solve equations and inequalities, graph, find domains and ranges, combine functions, and solve a multitude of real-world applications. In this course, you will not only be learning new algebraic techniques that are necessary for other math and science courses, but you will be learning to become a critical thinker. You will be able to determine what is the best approach to take such as numerical, graphical, or algebraic to solve a problem given particular information. Then you will investigate and solve the problem, interpret the answer, and determine if it is reasonable. A few examples of applications in this course are determining compound interest, growth of bacteria, decay of a radioactive substance, and the…
Introduction to statistics. We start with the basics of reading and interpretting data and then build into descriptive and inferential statistics that are typically covered in an introductory course on the subject. Overview of Khan Academy statistics. Statistics intro: mean, median and mode. Constructing a box-and-whisker plot. Sample mean versus population mean.. Variance of a population. Sample variance. Review and intuition why we divide by n-1 for the unbiased sample variance. Simulation showing bias in sample variance. Simulation providing evidence that (n-1) gives us unbiased estimate. Statistics: Standard Deviation. Statistics: Alternate Variance Formulas. Introduction to Random Variables. Probability Density Functions. Binomial Distribution 1. Binomial Distribution 2. Binomial Distribution 3. Binomial Distribution 4. Expected Value: E(X). Expected Value of Binomial Distribution. Poisson Process 1. Poisson Process 2. Introduction to the Normal Distribution. Normal Distribution Excel Exercise. Law of Large Numbers. ck12.org Normal Distribution Problems: Qualitative sense of normal distributions. ck12.org Normal Distribution Problems: Empirical Rule. ck12.org Normal Distribution Problems: z-score. ck12.org Exercise: Standard Normal Distribution and the Empirical Rule. ck12.org: More Empirical Rule and Z-score practice. Central Limit Theorem. Sampling Distribution of the Sample Mean. Sampling Distribution of the Sample Mean 2. Standard Error of the Mean. Sampling Distribution Example Problem. Confidence Interval 1. Confidence Interval Example. Mean and Variance of Bernoulli Distribution Example. Bernoulli Distribution Mean and Variance Formulas. Margin of Error 1. Margin of Error 2. Small Sample Size Confidence Intervals. Hypothesis Testing and P-values. One-Tailed and Two-Tailed Tests. Z-statistics vs. T-statistics. Type 1 Errors. Small Sample Hypothesis Test. T-Statistic Confidence Interval. Large Sample Proportion Hypothesis Testing. Variance of Differences of Random Variables. Difference of Sample Means Distribution. Confidence Interval of Difference of Means. Clarification of Confidence Interval of Difference of Means. Hypothesis Test for Difference of Means. Comparing Population Proportions 1. Comparing Population Proportions 2. Hypothesis Test Comparing Population Proportions. Squared Error of Regression Line. Proof (Part 1) Minimizing Squared Error to Regression Line. Proof Part 2 Minimizing Squared Error to Line. Proof (Part 3) Minimizing Squared Error to Regression Line. Proof (Part 4) Minimizing Squared Error to Regression Line. Regression Line Example. Second Regression Example. R-Squared or Coefficient of Determination. Calculating R-Squared. Covariance and the Regression Line. Correlation and Causality. Chi-Square Distribution Introduction. Pearson's Chi Square Test (Goodness of Fit). Contingency Table Chi-Square Test. ANOVA 1 - Calculating SST (Total Sum of Squares). ANOVA 2 - Calculating SSW and SSB (Total Sum of Squares Within and Between).avi. ANOVA 3 -Hypothesis Test with F-Statistic. Another simulation giving evidence that (n-1) gives us an unbiased estimate of variance. Mean Median and Mode. Range and Mid-range. Reading Pictographs. Reading Bar Graphs. Reading Line Graphs. Reading Pie Graphs (Circle Graphs). Misleading Line Graphs. Stem-and-leaf Plots. Box-and-Whisker Plots. Reading Box-and-Whisker Plots. Statistics: The Average. Statistics: Variance of a Population. Statistics: Sample Variance. Deductive Reasoning 1. Deductive Reasoning 2. Deductive Reasoning 3. Inductive Reasoning 1. Inductive Reasoning 2. Inductive Reasoning 3. Inductive Patterns.
This course provides a brief review of introductory algebra topics. Topics to be covered include integer operations, order of operations, perimeter and area, fractions and decimals, scientific notation, ratios and rates, conversions, percents, algebraic expressions, linear equations, the Pythagorean theorem, and graphing.
If you invest in financial markets, you may want to predict the price of a stock in six months from now on the basis of company performance measures and other economic factors. As a college student, you may be interested in knowing the dependence of the mean starting salary of a college graduate, based on your GPA. These are just some examples that highlight how statistics are used in our modern society. To figure out the desired information for each example, you need data to analyze. The purpose of this course is to introduce you to the subject of statistics as a science of data. There is data abound in this information age; how to extract useful knowledge and gain a sound understanding in complex data sets has been more of a challenge. In this course, we will focus on the fundamentals of statistics, which may be broadly described as the techniques to collect, clarify, summarize, organize, analyze, and interpret numerical information. This course will begin with a brief overview of the discipline of stat…
Statistics and statistical methods play a major role in the work environment in areas such as business, science, finance, economics, engineering to mention just a few. It is very important that people are comfortable with reading statistics and using statistical methods. This free online Diploma in Statistics will give you the knowledge and understanding of basic statistical methods such as sampling and collecting data, probability, distributions, regression analysis. By completing this course you will gain the knowledge and understanding to confidently read statistics and apply statistical methods within your daily working environment.
In this course, you will look at the properties behind the basic concepts of probability and statistics and focus on applications of statistical knowledge. You will learn about how statistics and probability work together. The subject of statistics involves the study of methods for collecting, summarizing, and interpreting data. Statistics formalizes the process of making decisions, and this course is designed to help you use statistical literacy to make better decisions. Note that this course has applications for the natural sciences, economics, computer science, finance, psychology, sociology, criminology, and many other fields. We read data in articles and reports every day. After finishing this course, you should be comfortable evaluating an author's use of data. You will be able to extract information from articles and display that information effectively. You will also be able to understand the basics of how to draw statistical conclusions. This course will begin with descriptive statistic…
This course introduces students to the basic concepts and logic of statistical reasoning and gives the students introductory-level practical ability to choose, generate, and properly interpret appropriate descriptive and inferential methods. In addition, the course helps students gain an appreciation for the diverse applications of statistics and its relevance to their lives and fields of study. The course does not assume any prior knowledge in statistics and its only prerequisite is basic algebra. We offer two versions of statistics, each with a different emphasis: Probability and Statistics and Statistical Reasoning. Each course includes all expository text, simulations, case studies, comprehension tests, interactive learning exercises, and the StatTutor labs. Each course contains all of the instructions for the four statistics packages options we support. To do the activities, you will need your own copy of Microsoft Excel, Minitab, the open source R software, TI calculator, or StatCrunch. One of the main differences between the courses is the path through probability. Probability and Statistics includes the classical treatment of probability as it is in the earlier versions of the OLI Statistics course.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.