Online courses directory (418)
Math is everywhere. In this class, you’ll gain an in-depth understanding of algebraic principles, many of which you may have seen before, and learn how to use them to solve problems that we encounter in everyday life. The online version of College Algebra will cover all of the topics that you would see in more traditional class formats, but it will present the material in a way that we hope you’ll find fresh and interesting. You will learn about functions, polynomials, graphing, complex numbers, exponential and logarithmic equations, and much more, all through exploring real-world scenarios.
College Algebra Prep will get you ready for College Algebra. We will cover the prerequisite algebra topics, study skills, success skills, and things you need to know about electronic homework systems, to be successful in college algebra. You will supply the drive and commitment to make this a successful course for you.
This course serves as an introduction to major topics of modern enumerative and algebraic combinatorics with emphasis on partition identities, young tableaux bijections, spanning trees in graphs, and random generation of combinatorial objects. There is some discussion of various applications and connections to other fields.
Build your earth science vocabulary and learn about cycles of matter and types of sedimentary rocks through the Education Portal course Earth Science 101: Earth Science. Our series of video lessons and accompanying self-assessment quizzes can help you boost your scientific knowledge ahead of the Excelsior Earth Science exam . This course was designed by experienced educators and examines both science basics, like experimental design and systems of measurement, and more advanced topics, such as analysis of rock deformation and theories of continental drift.
Build your earth science vocabulary and learn about cycles of matter and types of sedimentary rocks through the Education Portal course Earth Science 101: Earth Science. Our series of video lessons and accompanying self-assessment quizzes can help you boost your scientific knowledge ahead of the Excelsior Earth Science exam . This course was designed by experienced educators and examines both science basics, like experimental design and systems of measurement, and more advanced topics, such as analysis of rock deformation and theories of continental drift.
Build your earth science vocabulary and learn about cycles of matter and types of sedimentary rocks through the Education Portal course Earth Science 101: Earth Science. Our series of video lessons and accompanying self-assessment quizzes can help you boost your scientific knowledge ahead of the Excelsior Earth Science exam . This course was designed by experienced educators and examines both science basics, like experimental design and systems of measurement, and more advanced topics, such as analysis of rock deformation and theories of continental drift.
Build your earth science vocabulary and learn about cycles of matter and types of sedimentary rocks through the Education Portal course Earth Science 101: Earth Science. Our series of video lessons and accompanying self-assessment quizzes can help you boost your scientific knowledge ahead of the Excelsior Earth Science exam . This course was designed by experienced educators and examines both science basics, like experimental design and systems of measurement, and more advanced topics, such as analysis of rock deformation and theories of continental drift.
Build your earth science vocabulary and learn about cycles of matter and types of sedimentary rocks through the Education Portal course Earth Science 101: Earth Science. Our series of video lessons and accompanying self-assessment quizzes can help you boost your scientific knowledge ahead of the Excelsior Earth Science exam . This course was designed by experienced educators and examines both science basics, like experimental design and systems of measurement, and more advanced topics, such as analysis of rock deformation and theories of continental drift.
In this course students will learn about Noetherian rings and modules, Hilbert basis theorem, Cayley-Hamilton theorem, integral dependence, Noether normalization, the Nullstellensatz, localization, primary decomposition, DVRs, filtrations, length, Artin rings, Hilbert polynomials, tensor products, and dimension theory.
Example problems from random math competitions. 2003 AIME II Problem 1. 2003 AIME II Problem 3. 2003 AIME II Problem 4 (part 1). Sum of factors of 27000. Sum of factors 2. 2003 AIME II Problem 5. 2003 AIME II Problem 5 Minor Correction. Area Circumradius Formula Proof. 2003 AIME II Problem 8. Sum of Polynomial Roots (Proof). Sum of Squares of Polynomial Roots. 2003 AIME II Problem 9. 2003 AIME II Problem 12. 2003 AIME II Problem 13. 2003 AIME II Problem 10. 2003 AIME II Problem 11. 2003 AIME II Problem 14. 2003 AIME II Problem 15 (part 1). 2003 AIME II Problem 15 (part 2). 2003 AIME II Problem 15 (part 3). 2003 AIME II Problem 1. 2003 AIME II Problem 3. 2003 AIME II Problem 4 (part 1). Sum of factors of 27000. Sum of factors 2. 2003 AIME II Problem 5. 2003 AIME II Problem 5 Minor Correction. Area Circumradius Formula Proof. 2003 AIME II Problem 8. Sum of Polynomial Roots (Proof). Sum of Squares of Polynomial Roots. 2003 AIME II Problem 9. 2003 AIME II Problem 12. 2003 AIME II Problem 13. 2003 AIME II Problem 10. 2003 AIME II Problem 11. 2003 AIME II Problem 14. 2003 AIME II Problem 15 (part 1). 2003 AIME II Problem 15 (part 2). 2003 AIME II Problem 15 (part 3).
This course explored topics such as complex algebra and functions, analyticity, contour integration, Cauchy's theorem, singularities, Taylor and Laurent series, residues, evaluation of integrals, multivalued functions, potential theory in two dimensions, Fourier analysis and Laplace transforms.
6.844 is a graduate introduction to programming theory, logic of programming, and computability, with the programming language Scheme used to crystallize computability constructions and as an object of study itself. Topics covered include: programming and computability theory based on a term-rewriting, "substitution" model of computation by Scheme programs with side-effects; computation as algebraic manipulation: Scheme evaluation as algebraic manipulation and term rewriting theory; paradoxes from self-application and introduction to formal programming semantics; undecidability of the Halting Problem for Scheme; properties of recursively enumerable sets, leading to Incompleteness Theorems for Scheme equivalences; logic for program specification and verification; and Hilbert's Tenth Problem.
Topics in surface modeling: b-splines, non-uniform rational b-splines, physically based deformable surfaces, sweeps and generalized cylinders, offsets, blending and filleting surfaces. Non-linear solvers and intersection problems. Solid modeling: constructive solid geometry, boundary representation, non-manifold and mixed-dimension boundary representation models, octrees. Robustness of geometric computations. Interval methods. Finite and boundary element discretization methods for continuum mechanics problems. Scientific visualization. Variational geometry. Tolerances. Inspection methods. Feature representation and recognition. Shape interrogation for design, analysis, and manufacturing. Involves analytical and programming assignments.
This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.472J. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and this course was renumbered 2.158J.
This course provides a review of linear algebra, including applications to networks, structures, and estimation, Lagrange multipliers. Also covered are: differential equations of equilibrium; Laplace's equation and potential flow; boundary-value problems; minimum principles and calculus of variations; Fourier series; discrete Fourier transform; convolution; and applications.
Note: This course was previously called "Mathematical Methods for Engineers I."
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.