Online courses directory (272)
This course presents the fundamentals of object-oriented software design and development, computational methods and sensing for engineering, and scientific and managerial applications. It cover topics, including design of classes, inheritance, graphical user interfaces, numerical methods, streams, threads, sensors, and data structures. Students use Java® programming language to complete weekly software assignments.
How is 1.00 different from other intro programming courses offered at MIT?
1.00 is a first course in programming. It assumes no prior experience, and it focuses on the use of computation to solve problems in engineering, science and management. The audience for 1.00 is non-computer science majors. 1.00 does not focus on writing compilers or parsers or computing tools where the computer is the system; it focuses on engineering problems where the computer is part of the system, or is used to model a physical or logical system.
1.00 teaches the Java programming language, and it focuses on the design and development of object-oriented software for technical problems. 1.00 is taught in an active learning style. Lecture segments alternating with laboratory exercises are used in every class to allow students to put concepts into practice immediately; this teaching style generates questions and feedback, and allows the teaching staff and students to interact when concepts are first introduced to ensure that core ideas are understood. Like many MIT classes, 1.00 has weekly assignments, which are programs based on actual engineering, science or management applications. The weekly assignments build on the class material from the previous week, and require students to put the concepts taught in the small in-class labs into a larger program that uses multiple elements of Java together.
The class will cover quantitative techniques of Operations Research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick-up and delivery systems) and in the planning and design of logistically oriented urban service systems (e.g., fire and police departments, emergency medical services, emergency repair services). It presents a unified study of functions of random variables, geometrical probability, multi-server queueing theory, spatial location theory, network analysis and graph theory, and relevant methods of simulation. There will be discussion focused on the difficulty of implementation, among other topics.
This course is a core requirement for the Masters in Engineering program, designed to teach students about the roles of today's professional engineer and expose them to team-building skills through lectures, team workshops, and seminars. Topics include: written and oral communication, job placement skills, trends in the engineering and construction industry, risk analysis and risk management, managing public information, proposal preparation, project evaluation, project management, liability, professional ethics, and negotiation. The course draws on relevant large-scale projects to illustrate each component of the subject.
The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments.
Professor Oral Buyukozturk thanks Tzu-Yang Yu, a graduate student at MIT, for his valuable assistance in preparing course documents.
1.033 provides an introduction to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modeling and design of a large range of engineering materials. This course is offered both to undergraduate (1.033) and graduate (1.57) students.
This course presents a rational basis for the preliminary design of motion-sensitive structures. Topics covered include: analytical and numerical techniques for establishing the optimal stiffness distribution, the role of damping in controlling motion, tuned mass dampers, base isolation systems, and active structural control. Examples illustrating the application of the motion-based design paradigm to building structures subjected to seismic excitation are discussed.
This class covers quantitative analysis of uncertainty and risk for engineering applications. Fundamentals of probability, random processes, statistics, and decision analysis are covered, along with random variables and vectors, uncertainty propagation, conditional distributions, and second-moment analysis. System reliability is introduced. Other topics covered include Bayesian analysis and risk-based decision, estimation of distribution parameters, hypothesis testing, simple and multiple linear regressions, and Poisson and Markov processes. There is an emphasis placed on real-world applications to engineering problems.
1.011 Project Evaluation covers methodologies for evaluating civil engineering projects, which typically are large-scale and long-lived and involve many economic, financial, social and environmental factors. The course places an emphasis on dealing with uncertainty. Students learn basic techniques of engineering economics, including net present value analysis, life-cycle costing, benefit-cost analysis, and other approaches to project evaluation. Examples are drawn from both contemporary and historical projects in various fields, including transportation systems, urban development, energy and environmental projects, water resource management, telecommunications systems, and other elements of the public and private projects and programs.
1.040 Project Management focuses on the management and implementation of construction projects, primarily infrastructure projects. A project refers to a temporary piece of work undertaken to create a unique product or service. Whereas operations are continuous and repeating, projects are finite and have an end date. Projects bring form or function to ideas or need. Some notable projects include the Manhattan Project (developing the first nuclear weapon); the Human Genome Project (mapping the human genome); and the Central Artery Project (Boston's "Big Dig"). The field of project management deals with the planning, execution, and controlling of projects.
The course is divided into three parts:
Part 1: project finance
Part 2: project evaluation
Part 3: project organization
This course will cover the basic tools, skills, and knowledge necessary to successfully manage a project through its inception, design, planning, construction, and transition phases. There will be several guest lectures discussing current projects, and a construction site visit to MIT's Media Lab extension.
1.040 Project Management focuses on the management and implementation of construction projects, primarily infrastructure projects. A project refers to a temporary piece of work undertaken to create a unique product or service. Whereas operations are continuous and repeating, projects are finite and have an end date. Projects bring form or function to ideas or need. Some notable projects include the Manhattan Project (developing the first nuclear weapon); the Human Genome Project (mapping the human genome); and the Central Artery Project (Boston's "Big Dig"). The field of project management deals with the planning, execution, and controlling of projects.
The course is divided into three parts:
Part 1: project finance
Part 2: project evaluation
Part 3: project organization
This course will cover the basic tools, skills, and knowledge necessary to successfully manage a project through its inception, design, planning, construction, and transition phases. There will be several guest lectures discussing current projects, and a construction site visit to MIT's Media Lab extension.
This course discusses the evolution and role of urban public transportation modes, systems and services, focusing on bus and rail. Technological characteristics are described, along with their impacts on capacity, service quality, and cost. Current practice and new methods for data collection and analysis, performance monitoring, route and network design, frequency determination, and vehicle and crew scheduling are covered. The course also discusses effects of pricing policy and service quality on ridership, methods for estimating costs associated with proposed service changes, organizational models for delivering public transportation service including finance and operations, and select transit management topics including labor relations, fare policy and technology, marketing and operations management.
This class presents a detailed study of soil properties with emphasis on interpretation of field and laboratory test data and their use in soft-ground construction engineering. Topics to be covered include: consolidation and secondary compression; basic strength principles; stress-strain strength behavior of clays, emphasizing effects of sample disturbance, anisotropy, and strain rate; strength and compression of granular soils; and engineering properties of compacted soils. Some knowledge of field and laboratory testing is assumed for all students.
This course introduces students to basic properties of structural materials and behavior of simple structural elements and systems through a series of experiments. Students learn experimental technique, data collection, reduction and analysis, and presentation of results. Students generally take this subject during the same semester as 1.050, Solid Mechanics.
This course provides an overview of key concepts in strategic management in the construction, real estate, and architecture industries. Topics include supply chain analysis, market segmentation, vertical integration, competitive advantage, and industry transformation. This course is of interest to students seeking more understanding of the business dynamics of real estate and construction; seeking to provide value in firms which they may join; or seeking to build a foundation for their own entrepreneurial pursuits.
This course uses computer-based methods for the analysis of large-scale structural systems. Topics covered include: modeling strategies for complex structures; application to tall buildings, cable-stayed bridges, and tension structures; introduction to the theory of active structural control; design of classical feedback control systems for civil structures; and simulation studies using customized computer software.
This course aims at providing students with a solid background on the principles of structural engineering design. Students will be exposed to the theories and concepts of both concrete and steel design and analysis both at the element and system levels. Hands-on design experience and skills will be gained and learned through problem sets and a comprehensive design project. An understanding of real-world open-ended design issues will be developed. Besides regular lectures, weekly recitations and project discussion sessions will be held.
The course is designed to provide a better understanding of the built environment, globalization, the current financial crisis and the impact of these factors on the rapidly changing and evolving international architecture, engineering, construction fields.
We will, hopefully, obtain a better understanding of how these forces of globalization and the current financial crisis are having an impact on the built environment and how they will affect firms and your future career opportunities. We will also identify, review and discuss best practices and lessons that can be learned from recent events.
We will explore the "international built environment" in detail, examining how it functions and asking what are the managerial, entrepreneurial and professional opportunities, challenges and risks in it, especially growing crossover and multi-disciplinary opportunities; and we will seek to understand what makes this "built environment" so different from other sectors.
This course discusses management methods of relevance to public transportation systems. Topics include strategic planning management, labor relations, maintenance planning and administration, financing, marketing and fare policy, and management information and decision support systems. The course shows how these general management tasks are dealt with in the transit industry and presents alternative strategies. It also identifies alternative arrangements for service provision, including different ways of involving the private sector in public transportation.
This class serves as an introduction to mass transport in environmental flows, with emphasis given to river and lake systems. The class will cover the derivation and solutions to the differential form of mass conservation equations. Class topics to be covered will include: molecular and turbulent diffusion, boundary layers, dissolution, bed-water exchange, air-water exchange and particle transport.
Design, operation, and management of traffic flows over complex transportation networks are the foci of this course. It covers two major topics: traffic flow modeling and traffic flow operations. Sub-topics include deterministic and probabilistic models, elements of queuing theory, and traffic assignment. Concepts are illustrated through various applications and case studies. This is a half-term subject offered during the second half of the semester.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.