Online courses directory (272)
Recommender systems guide people to interesting materials based on information from other people. A large design space of alternative ways to organize such systems exists. The information that other people provide may come from explicit ratings, tags, or reviews, or implicitly from how they spend their time or money. The information can be aggregated and used to select, filter, or sort items. The recommendations may be personalized to the preferences of different users. Course Level: Graduate This Work, SI 580 - Understanding Records and Archives: Principles and Practices, by Paul Conway is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike license.
This course builds on the conceptual framework of information needs and the use of information provided in SI 501. In that course the focus is on techniques that information professionals use to understand the needs of people who employ a wide variety of information systems. Emphasis is on professional practice. Professional practice occurs both in institutional settings (including public, academic, special, and school libraries and information centers) and directly between information professionals and clients (such as information brokers). Prepares students for need-based, client-centered professional practice in a variety of information environments (including public, academic, special libraries and school media centers) in a period of major change. Professional practice consists of a variety of functions and practices which increase client access to information and knowledge. It is based both on an understanding of user information constructs and on knowledge of information systems and services. Course addresses concepts related to public libraries, academic libraries, special libraries, medical libraries, school libraries, and information centers, strategy and strategies, competency, and competencies. Course Level: Graduate This Work, SI 643 - Professional Practice in Libraries and Information Centers, by Joan C. Durrance is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike license.
This course provides a solid theoretical foundation for the analysis and processing of experimental data, and real-time experimental control methods. Topics covered include spectral analysis, filter design, system identification, and simulation in continuous and discrete-time domains. The emphasis is on practical problems with laboratory exercises.
This class presents a detailed study of soil properties with emphasis on interpretation of field and laboratory test data and their use in soft-ground construction engineering. Topics to be covered include: consolidation and secondary compression; basic strength principles; stress-strain strength behavior of clays, emphasizing effects of sample disturbance, anisotropy, and strain rate; strength and compression of granular soils; and engineering properties of compacted soils. Some knowledge of field and laboratory testing is assumed for all students.
In the third edition of Solar Energy, you will learn to design a complete photovoltaic system. This course introduces the technology that converts solar energy into electricity, heat and solar fuels with a main focus on electricity generation. Photovoltaic (PV) devices are presented as advanced semiconductor devices that deliver electricity directly from sunlight. The emphasis is on understanding the working principle of a solar cell, fabrication of solar cells, PV module construction and the design of a PV system. You will gain a greater understanding of the principles of the photovoltaic conversion— the conversion of light into electricity. This course explores the advantages, limitations and challenges of different solar cell technologies, such as crystalline silicon solar cell technology, thin film solar cell technologies and the latest novel solar cell concepts as studied on lab-scale. We will discuss the specifications of solar modules and demonstrate how to design a complete solar system for any particular application.
Education Method
The class will consist of a collection of eight to twelve minute lecture videos, exercises, assignments and exams. Specified assignments and the three exams will determine the final grade. The new textbook on “Solar Energy, basics, technology and systems” from the Delft University of Technology will be available for the students on-line and free of charge. Your course staff will encourage and challenge you to learn from, and interact with, your fellow students by helping each other and sharing ideas and best practices, in the course forum. We were happy to see the incredible number of interesting student videos on solar energy systems from all over the world in the previous edition of this course.
Professor Smets was the first ever recipient of the edX Prize for Exceptional Contributions to Online Teaching and Learning. His previous online courses attracted over 150,000 students worldwide, who were inspired to take their first steps in the transition to renewable energy.
LICENSE
The course materials of this course are Copyright Delft University of Technology and are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike (CC-BY-NC-SA) 4.0 International License.
This course introduces students to basic properties of structural materials and behavior of simple structural elements and systems through a series of experiments. Students learn experimental technique, data collection, reduction and analysis, and presentation of results. Students generally take this subject during the same semester as 1.050, Solid Mechanics.
This course forms an introduction to a selection of mathematical topics that are not covered in traditional mechanical engineering curricula, such as differential geometry, integral geometry, discrete computational geometry, graph theory, optimization techniques, calculus of variations and linear algebra. The topics covered in any particular year depend on the interest of the students and instructor. Emphasis is on basic ideas and on applications in mechanical engineering. This year, the subject focuses on selected topics from linear algebra and the calculus of variations. It is aimed mainly (but not exclusively) at students aiming to study mechanics (solid mechanics, fluid mechanics, energy methods etc.), and the course introduces some of the mathematical tools used in these subjects. Applications are related primarily (but not exclusively) to the microstructures of crystalline solids.
This class is jointly sponsored by the MIT Museum, Massachusetts Bay Maritime Artisans, the Department of Mechanical Engineering's Center for Ocean Engineering, and the Department of Architecture. The course teaches the fundamental steps in traditional boat design and demonstrates connections between craft and modern methods. Instructors provide vessel design orientation and then students carve their own shape ideas in the form of a wooden half-hull model. Experts teach the traditional skills of visualizing and carving your model in this phase of the class. After the models are completed, a practicing naval architect guides students in translating shape from models into a lines plan. The final phase of the class is a comparative analysis of the designs generated by the group.
This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.
This course provides an overview of key concepts in strategic management in the construction, real estate, and architecture industries. Topics include supply chain analysis, market segmentation, vertical integration, competitive advantage, and industry transformation. This course is of interest to students seeking more understanding of the business dynamics of real estate and construction; seeking to provide value in firms which they may join; or seeking to build a foundation for their own entrepreneurial pursuits.
This course uses computer-based methods for the analysis of large-scale structural systems. Topics covered include: modeling strategies for complex structures; application to tall buildings, cable-stayed bridges, and tension structures; introduction to the theory of active structural control; design of classical feedback control systems for civil structures; and simulation studies using customized computer software.
This course aims at providing students with a solid background on the principles of structural engineering design. Students will be exposed to the theories and concepts of both concrete and steel design and analysis both at the element and system levels. Hands-on design experience and skills will be gained and learned through problem sets and a comprehensive design project. An understanding of real-world open-ended design issues will be developed. Besides regular lectures, weekly recitations and project discussion sessions will be held.
This course covers the fundamental concepts of structural mechanics with applications to marine, civil, and mechanical structures. Topics include analysis of small deflections of beams, moderately large deflections of beams, columns, cables, and shafts; elastic and plastic buckling of columns, thin walled sections and plates; exact and approximate methods; energy methods; principle of virtual work; introduction to failure analysis of structures. We will include examples from civil, mechanical, offshore, and ship structures such as the collision and grounding of ships.
This course studies what makes a good design and how one develops a good design. Students consider how the design of engineered systems (such as hardware, software, materials, and manufacturing systems) differ from the "design" of natural systems such as biological systems; discuss complexity and how one makes use of complexity theory to improve design; and discover how one uses axiomatic design theory (AD theory) in design of many different kinds of engineered systems. Questions are analyzed using Axiomatic Design Theory and Complexity Theory. Case studies are presented including the design of machines, tribological systems, materials, manufacturing systems, and recent inventions. Implications of AD and complexity theories on biological systems discussed.
The course is designed to provide a better understanding of the built environment, globalization, the current financial crisis and the impact of these factors on the rapidly changing and evolving international architecture, engineering, construction fields.
We will, hopefully, obtain a better understanding of how these forces of globalization and the current financial crisis are having an impact on the built environment and how they will affect firms and your future career opportunities. We will also identify, review and discuss best practices and lessons that can be learned from recent events.
We will explore the "international built environment" in detail, examining how it functions and asking what are the managerial, entrepreneurial and professional opportunities, challenges and risks in it, especially growing crossover and multi-disciplinary opportunities; and we will seek to understand what makes this "built environment" so different from other sectors.
In this course, we will investigate the diverse types and functions of different RNA species, with a focus on "non-coding RNAs," i.e. those that do not directly encode proteins. The course will convey both the exciting discoveries in and frontiers of RNA research that are propelling our understanding of cell biology as well as the intellectual and experimental approaches responsible.
The molecular biology revolution firmly established the role of DNA as the primary carrier of genetic information and proteins as the primary effector molecules of the cell. The intermediate between DNA and proteins is RNA, which initially was regarded as the "molecule in the middle" of the central dogma. This view has been transformed over the past two decades, as RNA has become recognized as a critical regulator of cellular processes.
Toy Product Design is a MIT Public Service Center service learning design course offered in the Spring semester. This course, previously listed as SP.778, is an introduction to the product design process with a focus on designing for play and entertainment.
In this course, students work in small teams of 5-6 members to design and prototype new toys. Students work closely with a local sponsor, an elementary school, and experienced mentors on a themed toy design project. Students will be introduced to the product development process, including determining customer needs; brainstorming; estimation; sketching; sketch modeling; concept development; design aesthetics; detailed design; prototyping; and written, visual, and oral communication.
At the end of the course, students present their toy products at the Playsentations to toy designers, engineers, elementary school children and the MIT community.
For more information about this course, see the 2.00B Web site.
This course discusses management methods of relevance to public transportation systems. Topics include strategic planning management, labor relations, maintenance planning and administration, financing, marketing and fare policy, and management information and decision support systems. The course shows how these general management tasks are dealt with in the transit industry and presents alternative strategies. It also identifies alternative arrangements for service provision, including different ways of involving the private sector in public transportation.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.