Online courses directory (184)
Taxonomy and the Tree of Life. Species. Bacteria. Viruses. Human Prehistory 101: Prologue. Human Prehistory 101 Part 1: Out of (Eastern) Africa. Human Prehistory 101 Part 2: Weathering The Storm. Human Prehistory 101 Part 3: Agriculture Rocks Our World. Human Prehistory 101: Epilogue. Taxonomy and the Tree of Life. Species. Bacteria. Viruses. Human Prehistory 101: Prologue. Human Prehistory 101 Part 1: Out of (Eastern) Africa. Human Prehistory 101 Part 2: Weathering The Storm. Human Prehistory 101 Part 3: Agriculture Rocks Our World. Human Prehistory 101: Epilogue.
Ideal Gas Equation: PV=nRT. Ideal Gas Equation Example 1. Ideal Gas Equation Example 2. Ideal Gas Equation Example 3. Ideal Gas Equation Example 4. Partial Pressure. Vapor Pressure Example. Ideal Gas Equation: PV=nRT. Ideal Gas Equation Example 1. Ideal Gas Equation Example 2. Ideal Gas Equation Example 3. Ideal Gas Equation Example 4. Partial Pressure. Vapor Pressure Example.
This course will survey fundamental principles of cognitive and behavioral neurology. The emphasis of the course will be on the neural mechanisms underlying aspects of cognition and on diseases that affect intellect and behavior. No prior background in neurology, medicine, or neuroscience is required.
Diffusion and Osmosis. Parts of a cell. Chromosomes, Chromatids, Chromatin, etc.. Mitosis, Meiosis and Sexual Reproduction. Phases of Mitosis. Phases of Meiosis. Embryonic Stem Cells. Cancer. Diffusion and Osmosis. Parts of a cell. Chromosomes, Chromatids, Chromatin, etc.. Mitosis, Meiosis and Sexual Reproduction. Phases of Mitosis. Phases of Meiosis. Embryonic Stem Cells. Cancer.
ATP: Adenosine Triphosphate. Introduction to Cellular Respiration. Oxidation and Reduction Review From Biological Point-of-View. Oxidation and Reduction in Cellular Respiration. Krebs / Citric Acid Cycle. Glycolysis. Electron Transport Chain. Oxidative Phosphorylation and Chemiosmosis. ATP: Adenosine Triphosphate. Introduction to Cellular Respiration. Oxidation and Reduction Review From Biological Point-of-View. Oxidation and Reduction in Cellular Respiration. Krebs / Citric Acid Cycle. Glycolysis. Electron Transport Chain. Oxidative Phosphorylation and Chemiosmosis.
Introduction to Evolution and Natural Selection. Ape Clarification. Intelligent Design and Evolution. Evolution Clarification. Natural Selection and the Owl Butterfly. DNA. Variation in a Species. Introduction to Evolution and Natural Selection. Ape Clarification. Intelligent Design and Evolution. Evolution Clarification. Natural Selection and the Owl Butterfly. DNA. Variation in a Species.
Introduction to Heredity. Punnett Square Fun. Hardy-Weinberg Principle. Sex-Linked Traits. Genetics 101 Part 1: What are genes?. Genetics 101 Part 2: What are SNPs?. Genetics 101 Part 3: Where do your genes come from?. Genetics 101 Part 4: What are Phenotypes?. Introduction to Heredity. Punnett Square Fun. Hardy-Weinberg Principle. Sex-Linked Traits. Genetics 101 Part 1: What are genes?. Genetics 101 Part 2: What are SNPs?. Genetics 101 Part 3: Where do your genes come from?. Genetics 101 Part 4: What are Phenotypes?.
ATP: Adenosine Triphosphate. Photosynthesis. Photosynthesis: Light Reactions 1. Photosynthesis: Light Reactions and Photophosphorylation. Photosynthesis: Calvin Cycle. Photorespiration. C-4 Photosynthesis. CAM Plants. ATP: Adenosine Triphosphate. Photosynthesis. Photosynthesis: Light Reactions 1. Photosynthesis: Light Reactions and Photophosphorylation. Photosynthesis: Calvin Cycle. Photorespiration. C-4 Photosynthesis. CAM Plants.
The Lungs and Pulmonary System. Red blood cells. Circulatory System and the Heart. Hemoglobin. Anatomy of a Neuron. Sodium Potassium Pump. Correction to Sodium and Potassium Pump Video. Electrotonic and Action Potentials. Saltatory Conduction in Neurons. Neuronal Synapses (Chemical). Myosin and Actin. Tropomyosin and troponin and their role in regulating muscle contraction. Role of the Sarcoplasmic Reticulum in Muscle Cells. Anatomy of a muscle cell. The Kidney and Nephron. Secondary Active Transport in the Nephron. The Lungs and Pulmonary System. Red blood cells. Circulatory System and the Heart. Hemoglobin. Anatomy of a Neuron. Sodium Potassium Pump. Correction to Sodium and Potassium Pump Video. Electrotonic and Action Potentials. Saltatory Conduction in Neurons. Neuronal Synapses (Chemical). Myosin and Actin. Tropomyosin and troponin and their role in regulating muscle contraction. Role of the Sarcoplasmic Reticulum in Muscle Cells. Anatomy of a muscle cell. The Kidney and Nephron. Secondary Active Transport in the Nephron.
Role of Phagocytes in Innate or Nonspecific Immunity. Types of immune responses: Innate and Adaptive. Humoral vs. Cell-Mediated. B Lymphocytes (B cells). Professional Antigen Presenting Cells (APC) and MHC II complexes. Helper T Cells. Cytotoxic T Cells. Review of B cells, CD4+ T cells and CD8+ T cells. Inflammatory Response. Role of Phagocytes in Innate or Nonspecific Immunity. Types of immune responses: Innate and Adaptive. Humoral vs. Cell-Mediated. B Lymphocytes (B cells). Professional Antigen Presenting Cells (APC) and MHC II complexes. Helper T Cells. Cytotoxic T Cells. Review of B cells, CD4+ T cells and CD8+ T cells. Inflammatory Response.
Acid Base Introduction. pH, pOH of Strong Acids and Bases. pH of a Weak Acid. pH of a Weak Base. Conjugate Acids and Bases. pKa and pKb Relationship. Buffers and Hendersen-Hasselbalch. Strong Acid Titration. Weak Acid Titration. Half Equivalence Point. Titration Roundup. Acid Base Titration. Acid Base Introduction. pH, pOH of Strong Acids and Bases. pH of a Weak Acid. pH of a Weak Base. Conjugate Acids and Bases. pKa and pKb Relationship. Buffers and Hendersen-Hasselbalch. Strong Acid Titration. Weak Acid Titration. Half Equivalence Point. Titration Roundup. Acid Base Titration.
Molecular and Empirical Formulas. The Mole and Avogadro's Number. Formula from Mass Composition. Another mass composition problem. Balancing Chemical Equations. Stoichiometry. Stoichiometry Example Problem 1. Stoichiometry Example Problem 2. Stoichiometry: Limiting Reagent. Limiting Reactant Example Problem 1. Spectrophotometry Introduction. Spectrophotometry Example. Molecular and Empirical Formulas. The Mole and Avogadro's Number. Formula from Mass Composition. Another mass composition problem. Balancing Chemical Equations. Stoichiometry. Stoichiometry Example Problem 1. Stoichiometry Example Problem 2. Stoichiometry: Limiting Reagent. Limiting Reactant Example Problem 1. Spectrophotometry Introduction. Spectrophotometry Example.
Groups of the Periodic Table. Valence Electrons. Periodic Table Trends: Ionization Energy. Other Periodic Table Trends. Ionic, Covalent, and Metallic Bonds. Groups of the Periodic Table. Valence Electrons. Periodic Table Trends: Ionization Energy. Other Periodic Table Trends. Ionic, Covalent, and Metallic Bonds.
Types of Decay. Half-Life. Exponential Decay Formula Proof (can skip, involves Calculus). Introduction to Exponential Decay. More Exponential Decay Examples. Types of Decay. Half-Life. Exponential Decay Formula Proof (can skip, involves Calculus). Introduction to Exponential Decay. More Exponential Decay Examples.
This free online course in Chemistry looks at elements, electrochemistry and food chemistry among other topics. It is an ideal course to engage students and help them grapple with the subject matter in an interactive and self-paced manner. It is particularly suitable for any student of chemistry at second level, or anyone who wants to gain more knowledge and understanding of the world of chemistry.
This free online course offers an in-depth exploration of general, organic and analytic chemistry. It examines various topics such as chemical equilibrium, rates of reaction, chromatography and their applications in real-world industries. These tutorials are are an excellent complement to chemistry classes for students or for those working in the chemical industry who would like to refresh their knowledge of these topics.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.