Online courses directory (271)
This course covers the following topics: X-ray diffraction: symmetry, space groups, geometry of diffraction, structure factors, phase problem, direct methods, Patterson methods, electron density maps, structure refinement, how to grow good crystals, powder methods, limits of X-ray diffraction methods, and structure data bases.
This course describes the processes by which mass, momentum, and energy are transported in plasmas, with special reference to magnetic confinement fusion applications.
The Fokker-Planck collision operator and its limiting forms, as well as collisional relaxation and equilibrium, are considered in detail. Special applications include a Lorentz gas, Brownian motion, alpha particles, and runaway electrons.
The Braginskii formulation of classical collisional transport in general geometry based on the Fokker-Planck equation is presented.
Neoclassical transport in tokamaks, which is sensitive to the details of the magnetic geometry, is considered in the high (Pfirsch-Schluter), low (banana) and intermediate (plateau) regimes of collisionality.
This course covers the fundamentals of astrodynamics, focusing on the two-body orbital initial-value and boundary-value problems with applications to space vehicle navigation and guidance for lunar and planetary missions, including both powered flight and midcourse maneuvers. Other topics include celestial mechanics, Kepler's problem, Lambert's problem, orbit determination, multi-body methods, mission planning, and recursive algorithms for space navigation. Selected applications from the Apollo, Space Shuttle, and Mars exploration programs are also discussed.
Videos attempting to grasp a little bit about our Universe (many of the topics associated with "Big History"). Scale of Earth and Sun. Scale of Solar System. Scale of Distance to Closest Stars. Scale of the Galaxy. Intergalactic Scale. Hubble Image of Galaxies. Big Bang Introduction. Radius of Observable Universe. (Correction) Radius of Observable Universe. Red Shift. Cosmic Background Radiation. Cosmic Background Radiation 2. Cosmological Time Scale 1. Cosmological Time Scale 2. Four Fundamental Forces. Birth of Stars. Becoming a Red Giant. White and Black Dwarfs. A Universe Smaller than the Observable. Star Field and Nebula Images. Parallax in Observing Stars. Stellar Parallax. Stellar Distance Using Parallax. Stellar Parallax Clarification. Parsec Definition. Hubble's Law. Lifecycle of Massive Stars. Supernova (Supernovae). Supernova clarification. Black Holes. Cepheid Variables 1. Why Cepheids Pulsate. Why Gravity Gets So Strong Near Dense Objects. Supermassive Black Holes. Quasars. Quasar Correction. Galactic Collisions. Earth Formation. Beginnings of Life. Ozone Layer and Eukaryotes Show Up in the Proterozoic Eon. Biodiversity Flourishes in Phanerozoic Eon. First living things on land clarification. Plate Tectonics-- Difference between crust and lithosphere. Structure of the Earth. Plate Tectonics -- Evidence of plate movement. Plate Tectonics -- Geological Features of Divergent Plate Boundaries. Plate Tectonics-- Geological features of Convergent Plate Boundaries. Plates Moving Due to Convection in Mantle. Hawaiian Islands Formation. Compositional and Mechanical Layers of the Earth. Seismic Waves. Why S-Waves Only Travel in Solids. Refraction of Seismic Waves. The Mohorovicic Seismic Discontinuity. How we know about the Earth's core. Pangaea. Scale of the Large. Scale of the Small. Detectable Civilizations in our Galaxy 1. Detectable Civilizations in our Galaxy 2. Detectable Civilizations in our Galaxy 3. Detectable Civilizations in our Galaxy 4. Detectable Civilizations in our Galaxy 5. Human Evolution Overview. Understanding Calendar Notation. Correction Calendar Notation. Development of Agriculture and Writing. Introduction to Light. Seasons Aren't Dictated by Closeness to Sun. How Earth's Tilt Causes Seasons. Milankovitch Cycles Precession and Obliquity. Are Southern Hemisphere Seasons More Severe?. Precession Causing Perihelion to Happen Later. What Causes Precession and Other Orbital Changes. Apsidal Precession (Perihelion Precession) and Milankovitch Cycles. Firestick Farming. Carbon 14 Dating 1. Carbon 14 Dating 2. Potassium-Argon (K-Ar) Dating. K-Ar Dating Calculation. Chronometric Revolution. Collective Learning. Land Productivity Limiting Human Population. Energy Inputs for Tilling a Hectare of Land. Random Predictions for 2060.
Electromagnetic Theory covers the basic principles of electromagnetism: experimental basis, electrostatics, magnetic fields of steady currents, motional e.m.f. and electromagnetic induction, Maxwell's equations, propagation and radiation of electromagnetic waves, electric and magnetic properties of matter, and conservation laws. This is a graduate level subject which uses appropriate mathematics but whose emphasis is on physical phenomena and principles.
This course begins with a study of the role of dynamics in the general physics of the atmosphere, the consideration of the differences between modeling and approximation, and the observed large-scale phenomenology of the atmosphere. Only then are the basic equations derived in rigorous manner. The equations are then applied to important problems and methodologies in meteorology and climate, with discussions of the history of the topics where appropriate. Problems include the Hadley circulation and its role in the general circulation, atmospheric waves including gravity and Rossby waves and their interaction with the mean flow, with specific applications to the stratospheric quasi-biennial oscillation, tides, the super-rotation of Venus' atmosphere, the generation of atmospheric turbulence, and stationary waves among other problems. The quasi-geostrophic approximation is derived, and the resulting equations are used to examine the hydrodynamic stability of the circulation with applications ranging from convective adjustment to climate.
This course provides a thorough introduction to the principles and methods of physics for students who have good preparation in physics and mathematics. Emphasis is placed on problem solving and quantitative reasoning. This course covers Newtonian mechanics, special relativity, gravitation, thermodynamics, and waves.
Quantum computation is a remarkable subject building on the great computational discovery that computers based on quantum mechanics are exponentially powerful. This course aims to make this cutting-edge material broadly accessible to undergraduate students, including computer science majors who do not have any prior exposure to quantum mechanics. The course starts with a simple introduction to the fundamental principles of quantum mechanics using the concepts of qubits (or quantum bits) and quantum gates. This treatment emphasizes the paradoxical nature of the subject, including entanglement, non-local correlations, the no-cloning theorem and quantum teleportation. The course covers the fundamentals of quantum algorithms, including the quantum fourier transform, period finding, Shor's quantum algorithm for factoring integers, as well as the prospects for quantum algorithms for NP-complete problems. It also discusses the basic ideas behind the experimental realization of quantum computers, including the prospects for adiabatic quantum optimization and the D-Wave controversy.
Before your course starts, try the new edX Demo where you can explore the fun, interactive learning environment and virtual labs. Learn more.
Do I need a textbook for this class?
No. Notes will be posted each week. If you wish to consult other references, a list of related textbooks and online resources will be provided.
What is the estimated effort for course?
About 5-12 hrs/week.
Why is the work load range so wide?
How long you spend on the course depends upon your background and on the depth to which you wish to understand the material. The topics in this course are quite open ended, and will be presented so you can understand them at a high level or can try to follow it at a sophisticated level with the help of the posted notes.
How much does it cost to take the course?
Nothing! The course is free.
Will the text of the lectures be available?
Yes. All of our lectures will have transcripts synced to the videos.
Do I need to watch the lectures live?
No. You can watch the lectures at your leisure.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.