Online courses directory (2511)
This course examines the dynamic interrelations among physical and behavioral traits of humans, environment, and culture to provide an integrated framework for studying human biological evolution and modern diversity. Topics include issues in morphological evolution and adaptation; fossil and cultural evidence for human evolution from earliest times through the Pleistocene; evolution of tool use and social behavior; modern human variation and concepts of race. The class also studies stone artifacts and fossil specimens.
This calculus course covers differentiation and integration of functions of one variable, and concludes with a brief discussion of infinite series. Calculus is fundamental to many scientific disciplines including physics, engineering, and economics.
Course Format
This course has been designed for independent study. It includes all of the materials you will need to understand the concepts covered in this subject. The materials in this course include:
- Lecture Videos with supporting written notes
- Recitation Videos of problem-solving tips
- Worked Examples with detailed solutions to sample problems
- Problem sets with solutions
- Exams with solutions
- Interactive Java Applets ("Mathlets") to reinforce key concepts
Content Development
David Jerison
Arthur Mattuck
Haynes Miller
Benjamin Brubaker
Jeremy Orloff
This introductory calculus course covers differentiation and integration of functions of one variable, with applications.
This course covers differential, integral and vector calculus for functions of more than one variable. These mathematical tools and methods are used extensively in the physical sciences, engineering, economics and computer graphics.
Course Formats
The materials have been organized to support independent study. The website includes all of the materials you will need to understand the concepts covered in this subject. The materials in this course include:
- Lecture Videos recorded on the MIT campus
- Recitation Videos with problem-solving tips
- Examples of solutions to sample problems
- Problem for you to solve, with solutions
- Exams with solutions
- Interactive Java Applets ("Mathlets") to reinforce key concepts
Content Development
Denis Auroux
Arthur Mattuck
Jeremy Orloff
John Lewis
International Women’s Voices has several objectives. It introduces students to a variety of works by contemporary women writers from Asia, Africa, the Middle East, Latin America and North America. The emphasis is on non-western writers. The readings are chosen to encourage students to think about how each author’s work reflects a distinct cultural heritage and to what extent, if any, we can identify a female voice that transcends national cultures. In lectures and readings distributed in class, students learn about the history and culture of each of the countries these authors represent. The way in which colonialism, religion, nation formation and language influence each writer is a major concern of this course. In addition, students examine the patterns of socialization of women in patriarchal cultures, and how, in the imaginary world, authors resolve or understand the relationship of the characters to love, work, identity, sex roles, marriage, and politics.
This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include vectors and matrices, partial derivatives, double and triple integrals, and vector calculus in 2 and 3-space.
MIT OpenCourseWare offers another version of 18.02, from the Spring 2006 term. Both versions cover the same material, although they are taught by different faculty and rely on different textbooks. Multivariable Calculus (18.02) is taught during the Fall and Spring terms at MIT, and is a required subject for all MIT undergraduates.
This is a variation on 18.02 Multivariable Calculus. It covers the same topics as in 18.02, but with more focus on mathematical concepts.
Acknowledgement
Prof. McKernan would like to acknowledge the contributions of Lars Hesselholt to the development of this course.
The laws of nature are expressed as differential equations. Scientists and engineers must know how to model the world in terms of differential equations, and how to solve those equations and interpret the solutions. This course focuses on the equations and techniques most useful in science and engineering.
Course Format
This course has been designed for independent study. It provides everything you will need to understand the concepts covered in the course. The materials include:
- Lecture Videos by Professor Arthur Mattuck.
- Course Notes on every topic.
- Practice Problems with Solutions.
- Problem Solving Videos taught by experienced MIT Recitation Instructors.
- Problem Sets to do on your own with Solutions to check your answers against when you're done.
- A selection of Interactive Java® Demonstrations called Mathlets to illustrate key concepts.
- A full set of Exams with Solutions, including practice exams to help you prepare.
Content Development
Haynes Miller
Jeremy Orloff
Dr. John Lewis
Arthur Mattuck
Other Versions
Other OCW Versions
OCW has published multiple versions of this subject. ![]()
Related Content
Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time.
This course provides an elementary introduction to probability and statistics with applications. Topics include: basic combinatorics, random variables, probability distributions, Bayesian inference, hypothesis testing, confidence intervals, and linear regression.
The Spring 2014 version of this subject employed the residential MITx system, which enables on-campus subjects to provide MIT students with learning and assessment tools such as online problem sets, lecture videos, reading questions, pre-lecture questions, problem set assistance, tutorial videos, exam review content, and even online exams.
This course covers matrix theory and linear algebra, emphasizing topics useful in other disciplines such as physics, economics and social sciences, natural sciences, and engineering. It parallels the combination of theory and applications in Professor Strang’s textbook Introduction to Linear Algebra.
Course Format
This course has been designed for independent study. It provides everything you will need to understand the concepts covered in the course. The materials include:
- A complete set of Lecture Videos by Professor Gilbert Strang.
- Summary Notes for all videos along with suggested readings in Prof. Strang's textbook Linear Algebra.
- Problem Solving Videos on every topic taught by an experienced MIT Recitation Instructor.
- Problem Sets to do on your own with Solutions to check your answers against when you're done.
- A selection of Java® Demonstrations to illustrate key concepts.
- A full set of Exams with Solutions, including review material to help you prepare.
Other Versions
Other OCW Versions
OCW has published multiple versions of this subject. ![]()
Related Content
This course covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.
This is a communication intensive supplement to Linear Algebra (18.06). The main emphasis is on the methods of creating rigorous and elegant proofs and presenting them clearly in writing. The course starts with the standard linear algebra syllabus and eventually develops the techniques to approach a more advanced topic: abstract root systems in a Euclidean space.
This course analyzes the functions of a complex variable and the calculus of residues. It also covers subjects such as ordinary differential equations, partial differential equations, Bessel and Legendre functions, and the Sturm-Liouville theory.
This course continues from Analysis I (18.100B), in the direction of manifolds and global analysis. The first half of the course covers multivariable calculus. The rest of the course covers the theory of differential forms in n-dimensional vector spaces and manifolds.
This is a undergraduate course. It will cover normed spaces, completeness, functionals, Hahn-Banach theorem, duality, operators; Lebesgue measure, measurable functions, integrability, completeness of L-p spaces; Hilbert space; compact, Hilbert-Schmidt and trace class operators; as well as spectral theorem.
This course continues the content covered in 18.100 Analysis I. Roughly half of the subject is devoted to the theory of the Lebesgue integral with applications to probability, and the other half to Fourier series and Fourier integrals.
This is an advanced undergraduate course dealing with calculus in one complex variable with geometric emphasis. Since the course Analysis I (18.100B) is a prerequisite, topological notions like compactness, connectedness, and related properties of continuous functions are taken for granted.
This course offers biweekly problem sets with solutions, two term tests and a final exam, all with solutions.
This course covers harmonic theory on complex manifolds, the Hodge decomposition theorem, the Hard Lefschetz theorem, and Vanishing theorems. Some results and tools on deformation and uniformization of complex manifolds are also discussed.
This graduate-level course covers Lebesgue's integration theory with applications to analysis, including an introduction to convolution and the Fourier transform.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.