Online courses directory (2511)
Roles of neural plasticity in learning and memory and in development of invertebrates and mammals. An in-depth critical analysis of current literature of molecular, cellular, genetic, electrophysiological, and behavioral studies. Discussion of original papers supplemented by introductory lectures.
This course is an introduction to the mammalian nervous system, with emphasis on the structure and function of the human brain. Topics include the function of nerve cells, sensory systems, control of movement, learning and memory, and diseases of the brain.
Consists of a series of hands-on laboratories designed to give students experience with common techniques for conducting neuroscience research. Included are sessions on anatomical, ablation, neurophysiological, and computer modeling techniques, and ways these techniques are used to study brain function. Each session consists of a brief quiz on assigned readings that provide background to the lab, a lecture that expands on the readings, and that week's laboratory. Lab reports required. Students receive training in the art of scientific writing and oral presentation with feedback designed to improve writing and speaking skills. Assignments include two smaller lab reports, one major lab report with revision, and an oral report.
This course highlights the interplay between cellular and molecular storage mechanisms and the cognitive neuroscience of memory, with an emphasis on human and animal models of hippocampal mechanisms and function. Class sessions include lectures and discussion of papers.
Surveys general principles and specific examples of motor control in biological systems. Emphasizes the neural mechanisms underlying different aspects of movement and movement planning. Covers sensory reception, reflex arcs, spinal cord organization, pattern generators, muscle function, locomotion, eye movement, and cognitive aspects of motor control. Functions of central motor structures including cerebellum, basal ganglia, and cerebral cortex considered. Cortical plasticity, motor learning and computational approaches to motor control, and motor disorders are discussed.
This course emphasizes statistics as a powerful tool for studying complex issues in behavioral and biological sciences, and explores the limitations of statistics as a method of inquiry. The course covers descriptive statistics, probability and random variables, inferential statistics, and basic issues in experimental design. Techniques introduced include confidence intervals, t-tests, F-tests, regression, and analysis of variance. Assignments include a project in data analysis.
This course explores the cognitive and neural processes that support attention, vision, language, motor control, navigation, and memory. It introduces basic neuroanatomy, functional imaging techniques, and behavioral measures of cognition, and discusses methods by which inferences about the brain bases of cognition are made. We consider evidence from patients with neurological diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, Balint's syndrome, amnesia, and focal lesions from stroke) and from normal human participants.
Designed for students without previous experience in techniques of cellular and molecular biology, this class teaches basic experimental techniques in cellular and molecular neurobiology. Experimental approaches covered include tissue culture of neuronal cell lines, dissection and culture of brain cells, DNA manipulation, synaptic protein analysis, immunocytochemistry, and fluorescent microscopy.
This course provides an outline of vertebrate functional neuroanatomy, aided by studies of comparative neuroanatomy and evolution, and by studies of brain development. Topics include early steps to a central nervous system, basic patterns of brain and spinal cord connections, regional development and differentiation, regeneration, motor and sensory pathways and structures, systems underlying motivations, innate action patterns, formation of habits, and various cognitive functions. In addition, lab techniques are reviewed and students perform brain dissections.
This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. We focus on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); we also examine amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems and ion fluxes that they control. The involvement of particular neurotransmitters in human diseases is considered.
This course includes:
- Surveying the molecular and cellular mechanisms of neuronal communication.
- Coversion channels in excitable membrane, synaptic transmission, and synaptic plasticity.
- Correlation of the properties of ion channels and synaptic transmission with their physiological function such as learning and memory.
- Discussion of the organizational principles for the formation of functional neural networks at synaptic and cellular levels.