Online courses directory (2511)
This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.
Acknowledgments
Prof. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.
This course introduces programming languages and techniques used by physical scientists: FORTRAN, C, C++, MATLAB®, and Mathematica. Emphasis is placed on program design, algorithm development and verification, and comparative advantages and disadvantages of different languages.
Required for all Earth, Atmospheric, and Planetary Sciences majors in the Environmental Science track, this course is an introduction to current research in the field. Stresses integration of central scientific concepts in environmental policy making and the chemistry, biology, and geology environmental science tracks. Revisits selected core themes for students who have already acquired a basic understanding of environmental science concepts. The topic for this term is geoengineering.
This is an undergraduate introductory laboratory subject in ocean chemistry and measurement. There are three main elements to the course: oceanic chemical sampling and analysis, instrumentation development for the ocean environment, and the larger field of ocean science.
This course is offered through The MIT/WHOI Joint Program. The MIT/WHOI Joint Program is one of the premier marine science graduate programs in the world. It draws on the complementary strengths and approaches of two great institutions: the Massachusetts Institute of Technology (MIT) and the Woods Hole Oceanographic Institution (WHOI).
The geologic record demonstrates that our environment has changed over a variety of time scales from seconds to billions of years. This course explores the many ways in which geologic processes control and modify the Earth's environment and serves as an introduction to Environmental Earth Science Field Course (12.120), which addresses field applications of these principles in the American Southwest.
This course examines the science of natural catastrophes such as earthquakes and hurricanes and explores the relationships between the science of and policy toward such hazards. It presents the causes and effects of these phenomena, discusses their predictability, and examines how this knowledge influences policy making. This course includes intensive practice in the writing and presentation of scientific research and summaries for policy makers.
This course provides a comprehensive introduction to crystalline structure, crystal chemistry, and bonding in rock-forming minerals. It introduces the theory relating crystal structure and crystal symmetry to physical properties such as refractive index, elastic modulus, and seismic velocity. It surveys the distribution of silicate, oxide, and metallic minerals in the interiors and on the surfaces of planets, and discusses the processes that led to their formation. It also addresses why diamonds are hard and why micas split into thin sheets.
This undergraduate petrology course surveys the distribution, chemical composition, and mineral associations in rocks of the earth's crust and upper mantle, and establishes its relation to tectonic environment. The emphasis of the course is on the use of chemistry and physics to interpret rock forming processes.
Structural geology is the study of processes and products of rock deformation. This course introduces the techniques of structural geology through a survey of the mechanics of rock deformation, a survey of the features and geometries of faults and folds, and techniques of strain analysis. Regional structural geology and tectonics are introduced. Class lectures are supplemented by lab exercises and demonstrations as well as field trips to local outcrops.
The course provides students with (1) an introduction to the geologic history of western North America, with particular emphasis on our field camp location and (2) an introduction to both digital and traditional techniques of geological field study. The weather permitting, several weekend field exercises provide practical experience in preparation for Field Geology II (12.115). It presents introductory material on the regional geology of the locale of 12.115.
This is a laboratory course supplemented by lectures that focus on selected analytical facilities that are commonly used to determine the mineralogy, elemental abundance and isotopic ratios of Sr and Pb in rocks, soils, sediments and water.
This is an introduction to the study of the solar system with emphasis on the latest spacecraft results. The subject covers basic principles rather than detailed mathematical and physical models. Topics include: an overview of the solar system, planetary orbits, rings, planetary formation, meteorites, asteroids, comets, planetary surfaces and cratering, planetary interiors, planetary atmospheres, and life in the solar system.
Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.
This course covers the basic principles of planet atmospheres and interiors applied to the study of extrasolar planets (exoplanets). We focus on fundamental physical processes related to observable exoplanet properties. We also provide a quantitative overview of detection techniques and an introduction to the feasibility of the search for Earth-like planets, biosignatures and habitable conditions on exoplanets.
This course provides an introduction to the physics and chemistry of the atmosphere, including experience with computer codes. It is intended for undergraduates and first year graduate students.
This course focuses on developing oral presentation skills through practice, self-evaluation, and in-class feedback. Topics include slide preparation, answering difficult questions, explaining technical details and presenting to a general audience.
This course is a series of presentations on an advanced topic in the field of geology by the visiting William Otis Crosby lecturer. The Crosby lectureship is awarded to a distinguished international scientist each year to introduce new scientific perspectives to the MIT community. This year's Crosby lecturer is Prof. Kevin Burke. His lecture is about African history. The basic theme is the distinctiveness of the African continent in both the way that it originated 600 million years ago and in the way that it has developed ever since.
This course covers examination of the state of knowledge of planetary formation, beginning with planetary nebulas and continuing through accretion (from gas, to dust, to planetesimals, to planetary embryos, to planets). It also includes processes of planetary differentiation, crust formation, atmospheric degassing, and surface water condensation. This course has integrated discussions of compositional and physical processes, based upon observations from our solar system and from exoplanets. Focus on terrestrial (rocky and metallic) planets, though more volatile-rich bodies are also examined.
In this course, principles of thermodynamics are used to infer the physical conditions of formation and modification of igneous and metamorphic rocks. The course includes phase equilibria of homogeneous and heterogeneous systems and thermodynamic modeling of non-ideal crystalline solutions. It also surveys the processes that lead to the formation of metamorphic and igneous rocks in the major tectonic environments in the Earth's crust and mantle.
Advanced Igneous Petrology covers the history of and recent developments in the study of igneous rocks. Students review the chemistry and structure of igneous rock-forming minerals and proceed to study how these minerals occur and interact in igneous rocks. The course focuses on igneous processes and how we have learned about them through studying a number of significant sites worldwide.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.