Online courses directory (2511)
This course teaches the design of contemporary information systems for biological and medical data. Examples are chosen from biology and medicine to illustrate complete life cycle information systems, beginning with data acquisition, following to data storage and finally to retrieval and analysis. Design of appropriate databases, client-server strategies, data interchange protocols, and computational modeling architectures. Students are expected to have some familiarity with scientific application software and a basic understanding of at least one contemporary programming language (e.g. C, C++, Java, Lisp, Perl, Python). A major term project is required of all students. This subject is open to motivated seniors having a strong interest in biomedical engineering and information system design with the ability to carry out a significant independent project.
This course was offered as part of the Singapore-MIT Alliance (SMA) program as course number SMA 5304.
The main objective of this course is to give broad insight into the different facets of transportation systems, while providing a solid introduction to transportation demand and cost analyses. As part of the core in the Master of Science in Transportation program, the course will not focus on a specific transportation mode but will use the various modes to apply the theoretical and analytical concepts presented in the lectures and readings.
Introduces transportation systems analysis, stressing demand and economic aspects. Covers the key principles governing transportation planning, investment, operations and maintenance. Introduces the microeconomic concepts central to transportation systems. Topics covered include economic theories of the firm, the consumer, and the market, demand models, discrete choice analysis, cost models and production functions, and pricing theory. Application to transportation systems include congestion pricing, technological change, resource allocation, market structure and regulation, revenue forecasting, public and private transportation finance, and project evaluation; covering urban passenger transportation, freight, aviation and intelligent transportation systems.
This class surveys the current concepts, theories, and issues in strategic management of transportation organizations. It provides transportation logistics and engineering systems students with an overview of the operating context, leadership challenges, strategies, and management tools that are used in today's public and private transportation organizations. The following concepts, tools, and issues are presented in both public and private sector cases: alternative models of decision-making, strategic planning (e.g., use of SWOT analysis and scenario development), stakeholder valuation and analysis, government-based regulation and cooperation within the transportation enterprise, disaster communications, systems safety, change management, and the impact of globalization.
This course is designed for graduate students with an interest in using primary research literature to discuss and learn about current research around non-conventional light stable isotope geochemistry.
6.101 is an introductory experimental laboratory that explores the design, construction, and debugging of analog electronic circuits. Lectures and six laboratory projects investigate the performance characteristics of diodes, transistors, JFETs, and op-amps, including the construction of a small audio amplifier and preamplifier. Seven weeks are devoted to the design and implementation, and written and oral presentation of a project in an environment similar to that of engineering design teams in industry. The course provides opportunity to simulate real-world problems and solutions that involve trade offs and the use of engineering judgment. Engineers from local analog engineering companies come to campus to help students with their design projects.
This course provides an introduction to the technology and policy context of public communications networks, through critical discussion of current issues in communications policy and their historical roots. The course focuses on underlying rationales and models for government involvement and the complex dynamics introduced by co-evolving technologies, industry structure, and public policy objectives. Cases drawn from cellular, fixed-line, and Internet applications include evolution of spectrum policy and current proposals for reform; the migration to broadband and implications for universal service policies; and property rights associated with digital content. The course lays a foundation for thesis research in this domain.
This course covers Japanese: The Spoken Language lessons 17 through 22. It will further develop the four basic skills, speaking, listening, reading and writing, that students have acquired through Japanese I, II and III courses, with emphasis on oral communication skills in various practical situations. Students will learn approximately 100 Kanji characters in this course. Sessions in English cover grammar explanation, socio-cultural information and other important issues for using the language, while Japanese lessons focus on the actual use of the language, integrating students' prior knowledge with newly learned patterns, and communicating within the frame given in the class.
This subject offers a broad survey of texts (both literary and philosophical) drawn from the Western tradition and selected to trace the growth of ideas about nature and the natural environment of mankind. The term nature in this context has to do with the varying ways in which the physical world has been conceived as the habitation of mankind, a source of imperatives for the collective organization and conduct of human life. In this sense, nature is less the object of complex scientific investigation than the object of individual experience and direct observation. Using the term "nature" in this sense, we can say that modern reference to "the environment" owes much to three ideas about the relation of mankind to nature. In the first of these, which harks back to ancient medical theories and notions about weather, geographical nature was seen as a neutral agency affecting or transforming agent of mankind's character and institutions. In the second, which derives from religious and classical sources in the Western tradition, the earth was designed as a fit environment for mankind or, at the least, as adequately suited for its abode, and civic or political life was taken to be consonant with the natural world. In the third, which also makes its appearance in the ancient world but becomes important only much later, nature and mankind are regarded as antagonists, and one must conquer the other or be subjugated by it.
This course covers the fundamentals of mathematical analysis: convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, and the interchange of limit operations. It shows the utility of abstract concepts and teaches an understanding and construction of proofs. MIT students may choose to take one of three versions of Real Analysis; this version offers three additional units of credit for instruction and practice in written and oral presentation.
The three options for 18.100:
- Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible.
- Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the plane) and its point-set topology.
- Option C (18.100C) is a 15-unit variant of Option B, with further instruction and practice in written and oral communication. This fulfills the MIT CI requirement.
Other Versions
Related Content
This class teaches the fundamentals of signals and information theory with emphasis on modeling audio/visual messages and physiologically derived signals, and the human source or recipient. Topics include linear systems, difference equations, Z-transforms, sampling and sampling rate conversion, convolution, filtering, modulation, Fourier analysis, entropy, noise, and Shannon's fundamental theorems. Additional topics may include data compression, filter design, and feature detection. The undergraduate subject MAS.160 meets with the two half-semester graduate subjects MAS.510 and MAS.511, but assignments differ.
This course is intended to assist undergraduates with learning the basics of programming in general and programming MATLAB® in particular.
This course introduces students to the theory, algorithms, and applications of optimization. The optimization methodologies include linear programming, network optimization, integer programming, and decision trees. Applications to logistics, manufacturing, transportation, marketing, project management, and finance. Includes a team project in which students select and solve a problem in practice.
The Team Project has the goals of (1) developing teamwork and leadership skills and (2) learning from the analysis of a change initiative in a real-world company using concepts from other core courses. This class has no regular class schedule or weekly readings. Almost everything is oriented around your team and your project, with only a few deadlines. Each team is responsible for analyzing a recent, ongoing, or anticipated initiative at a real company. Examples might be a strategic reorientation, organizational restructuring, introduction of a new technology, or worker participation program.
This course is closely integrated with other MBA core classes: readings are assigned through Organizational Processes (15.311) and oral presentations are given in Communication for Managers (15.280).
This seminar focuses on understanding the role of high-quality design as a tool to address urban social problems. This course will also examine marginalized spaces and how urban design can intervene as a tool to creatively challenge traditional urban design practices.
This course is a global-oriented survey of the history of architecture, from the prehistoric to the sixteenth century. It treats buildings and environments, including cities, in the context of the cultural and civilizational history. It offers an introduction to design principles and analysis. Being global, it aims to give the student perspective on the larger pushes and pulls that influence architecture and its meanings, whether these be economic, political, religious or climatic.
9.63 teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and hands-on experimental exercises and requires an independent experimental project. Some experience in programming is desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments. A fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports.
This course offers an advanced introduction to numerical linear algebra. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating point standard, sparse and structured matrices, preconditioning, linear algebra software. Problem sets require some knowledge of MATLAB®.
This course is primarily a literature seminar. We will use American literature as a lens through which to examine different passing tropes. It will provide an introduction to queer, gender, and critical race theories for science and math majors. We will read such works as Running A Thousand Miles for Freedom, Incognegro, and Focault's A History of Sexuality, to name just a few.
This course will focus on fundamental subjects in convexity, duality, and convex optimization algorithms. The aim is to develop the core analytical and algorithmic issues of continuous optimization, duality, and saddle point theory using a handful of unifying principles that can be easily visualized and readily understood.
15.975 U-Lab: Leading Profound Innovation for a More Sustainable World is an interactive and experiential class about leading profound innovation for pioneering a more sustainable economy and society. The class is organized around personal reflection practices, relational practices, and societal practices. It focuses on the intertwined relationship between the evolution of capitalism, multi-stakeholder innovation, and presencing.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.