Online courses directory (2511)
This class covers quantitative analysis of uncertainty and risk for engineering applications. Fundamentals of probability, random processes, statistics, and decision analysis are covered, along with random variables and vectors, uncertainty propagation, conditional distributions, and second-moment analysis. System reliability is introduced. Other topics covered include Bayesian analysis and risk-based decision, estimation of distribution parameters, hypothesis testing, simple and multiple linear regressions, and Poisson and Markov processes. There is an emphasis placed on real-world applications to engineering problems.
15.082J/6.855J/ESD.78J is a graduate subject in the theory and practice of network flows and its extensions. Network flow problems form a subclass of linear programming problems with applications to transportation, logistics, manufacturing, computer science, project management, and finance, as well as a number of other domains. This subject will survey some of the applications of network flows and focus on key special cases of network flow problems including the following: the shortest path problem, the maximum flow problem, the minimum cost flow problem, and the multi-commodity flow problem. We will also consider other extensions of network flow problems.
In this class, students use data and systems knowledge to build models of complex socio-technical systems for improved system design and decision-making. Students will enhance their model-building skills, through review and extension of functions of random variables, Poisson processes, and Markov processes; move from applied probability to statistics via Chi-squared t and f tests, derived as functions of random variables; and review classical statistics, hypothesis tests, regression, correlation and causation, simple data mining techniques, and Bayesian vs. classical statistics. A class project is required.
This is an advanced undergraduate course dealing with calculus in one complex variable with geometric emphasis. Since the course Analysis I (18.100B) is a prerequisite, topological notions like compactness, connectedness, and related properties of continuous functions are taken for granted.
This course offers biweekly problem sets with solutions, two term tests and a final exam, all with solutions.
In this course, we will rebuild the everyday sounds of nature, machines, and animals from scratch and encapsulate them in dynamic sound objects which can be embedded into computer games, animations, movies, virtual environments, sound installations, and theatre productions. You will learn how to analyze and model sounds and resynthesize them with the open-source graphical programming environment Pure Data (Pd). Our work will be guided by Andy Farnell's book Designing Sound (MIT Press, 2010). No previous programming experience is required.
Problems in nuclear engineering often involve applying knowledge from many disciplines simultaneously in achieving satisfactory solutions. The course will focus on understanding the complete nuclear reactor system including the balance of plant, support systems and resulting interdependencies affecting the overall safety of the plant and regulatory oversight. Both the Seabrook and Pilgrim nuclear plant simulators will be used as part of the educational experience to provide as realistic as possible understanding of nuclear power systems short of being at the reactor.
This studio explores the notion of in-between by engaging several relationships; the relationship between intervention and perception, between representation and notation and between the fixed and the temporal. In the Exactitude in Science, Jorge Luis Borges tells the perverse tale of the one to one scale map, where the desire for precision and power leads to the escalating production of larger and more accurate maps of the territory. For Jean Baudrillard, "The territory no longer precedes the map nor survives it. …it is the map that precedes the territory... and thus, it would be the territory whose shreds are slowly rotting across the map." The map or the territory, left to ruin-shredding across the 'other', beautifully captures the tension between reality and representation. Mediating between collective desire and territorial surface, maps filter, create, frame, scale, orient, and project. A map has agency. It is not merely representational but operational, the experience and discursive potential of this process lies in the reciprocity between the representation and the real. It is in-between these specific sets of relationships that this studio positions itself.
The structure of the course is designed to have students acquire a broad understanding of the field of Marine Chemistry; to get a feel for experimental methodologies, the results that they have generated and the theoretical insights they have yielded to date.
Introduction to econometric models and techniques, simultaneous equations, program evaluation, emphasizing regression. Advanced topics include instrumental variables, panel data methods, measurement error, and limited dependent variable models. May not count toward HASS requirement.
6.171 is a course for students who already have some programming and software engineering experience. The goal is to give students some experience in dealing with those challenges that are unique to Internet applications, such as:
- concurrency;
- unpredictable load;
- security risks;
- opportunity for wide-area distributed computing;
- creating a reliable and stateful user experience on top of unreliable connections and stateless protocols;
- extreme requirements and absurd development schedules;
- requirements that change mid-way through a project, sometimes because of experience gained from testing with users;
- user demands for a multi-modal interface.