Online courses directory (2511)
This course is an investigation of the Roman empire of Augustus, the Frankish empire of Charlemagne, and the English empire in the age of the Hundred Years War. Students examine different types of evidence, read across a variety of disciplines, and develop skills to identify continuities and changes in ancient and medieval societies. Each term this course is different, looking at different materials from a variety of domains to explore ancient and mideveal studies. This version is a capture of the course as it was taught in 2012, and does not reflect how it is taught currently.
This course examines civic media in comparative, transnational and historical perspectives through the use of various theoretical tools, research approaches, and project design methods.
This course provides students with a scientific foundation of anthropogenic climate change and an introduction to climate models. It focuses on fundamental physical processes that shape climate (e.g. solar variability, orbital mechanics, greenhouse gases, atmospheric and oceanic circulation, and volcanic and soil aerosols) and on evidence for past and present climate change. During the course they discuss material consequences of climate change, including sea level change, variations in precipitation, vegetation, storminess, and the incidence of disease. This course also examines the science behind mitigation and adaptation proposals.
The ability to quantify the uncertainty in our models of nature is fundamental to many inference problems in Science and Engineering. In this course, we study advanced methods to represent, sample, update and propagate uncertainty. This is a "hands on" course: Methodology will be coupled with applications. The course will include lectures, invited talks, discussions, reviews and projects and will meet once a week to discuss a method and its applications.
This undergraduate course focuses on traditional algebra topics that have found greatest application in science and engineering as well as in mathematics.
This course is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics covered include kinematics, force-momentum formulation for systems of particles and rigid bodies in planar motion, work-energy concepts, virtual displacements and virtual work. Students will also become familiar with the following topics: Lagrange's equations for systems of particles and rigid bodies in planar motion, and linearization of equations of motion. After this course, students will be able to evaluate free and forced vibration of linear multi-degree of freedom models of mechanical systems and matrix eigenvalue problems.
Other Versions
Other OCW Versions
These different OCW versions provide complementary materials, including lecture videos, detailed lecture notes, and many sample problems.