Online courses directory (2511)
This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data. Enrollment preference is given to juniors and seniors.
This course focuses on novels and films from the last twenty-five years (nominally 1985–2010) marked by their relationship to extreme violence and transgression. Our texts will focus on serial killers, torture, rape, and brutality, but they also explore notions of American history, gender and sexuality, and reality television—sometimes, they delve into love or time or the redemptive role of art in late modernity. Our works are a motley assortment, with origins in the U.S., France, Spain, Belgium, Austria, Japan and South Korea. The broad global era marked by this period is one of acceleration, fragmentation, and late capitalism; however, we will also consider national specificities of violent representation, including particulars like the history of racism in the United States, the role of politeness in bourgeois Austrian culture, and the effect of Japanese manga on vividly graphic contemporary Asian cinema.
We will explore the politics and aesthetics of the extreme; affective questions about sensation, fear, disgust, and shock; and problems of torture, pain, and the unrepresentable. We will ask whether these texts help us understand violence, or whether they frame violence as something that resists comprehension; we will consider whether form mitigates or colludes with violence. Finally, we will continually press on the central term in the title of this course: what, specifically, is violence? (Can we only speak of plural "violences"?) Is violence the same as force? Do we know violence when we see it? Is it something knowable or does it resist or even destroy knowledge? Is violence a matter for a text's content—who does what, how, and to whom—or is it a problem of form: shock, boredom, repetition, indeterminacy, blankness? Can we speak of an aesthetic of violence? A politics or ethics of violence? Note the question that titles our last week: Is it the case that we are what we see? If so, what does our obsession with ultraviolence mean, and how does contemporary representation turn an accusing gaze back at us?
This is an introduction to the study of the solar system with emphasis on the latest spacecraft results. The subject covers basic principles rather than detailed mathematical and physical models. Topics include: an overview of the solar system, planetary orbits, rings, planetary formation, meteorites, asteroids, comets, planetary surfaces and cratering, planetary interiors, planetary atmospheres, and life in the solar system.
Why has it been easier to develop a vaccine to eliminate polio than to control influenza or AIDS? Has there been natural selection for a 'language gene'? Why are there no animals with wheels? When does 'maximizing fitness' lead to evolutionary extinction? How are sex and parasites related? Why don't snakes eat grass? Why don't we have eyes in the back of our heads? How does modern genomics illustrate and challenge the field?
This course analyzes evolution from a computational, modeling, and engineering perspective. The course has extensive hands-on laboratory exercises in model-building and analyzing evolutionary data.
This course covers medieval Japanese society and culture from the twelfth to the nineteenth centuries, when political power rested largely in the hands of feudal warriors. Topics include religion (especially Zen Buddhism); changing concepts of "the way of the warrior;" women under feudalism; popular culture; and protest and rebellion. Presentations include weekly feature films. Assigned readings include many literary writings in translation.
This freshman course explores the scientific publication cycle, primary vs. secondary sources, and online and in-print bibliographic databases; how to search, find, evaluate, and cite information; indexing and abstracting; using special resources (e.g. patents) and "grey literature" (e.g. technical reports and conference proceedings); conducting Web searches; and constructing literature reviews.
This graduate seminar examines civic engagement in international, national and local environmental governance. We will consider theories pertaining to civil society development, social movement mobilization, and the relations that nongovernmental organizations (NGOs) have with governments and corporations. During the course of the semester, particular attention will be given to the legitimacy and accountability of NGOs. Case studies of NGO and community responses to specific environmental issues will be used to illustrate theoretical issues and assess the impacts that these actors have on environmental policy and planning.
This course introduces dynamic processes and the engineering tasks of process operations and control. Subject covers modeling the static and dynamic behavior of processes; control strategies; design of feedback, feedforward, and other control structures; and applications to process equipment.
Dedication
In preparing this material, the author has recalled with pleasure his own introduction, many years ago, to Process Control. This OCW course is dedicated with gratitude, to Prof. W. C. Clements of the University of Alabama.
This course is an introduction to computational theories of human cognition. Drawing on formal models from classic and contemporary artificial intelligence, students will explore fundamental issues in human knowledge representation, inductive learning and reasoning. What are the forms that our knowledge of the world takes? What are the inductive principles that allow us to acquire new knowledge from the interaction of prior knowledge with observed data? What kinds of data must be available to human learners, and what kinds of innate knowledge (if any) must they have?
This course is an examination of philosophical theories of action and motivation in the light of empirical findings from social psychology, sociology, and neuroscience. Topics include belief, desire, and moral motivation; sympathy and empathy; intentions and other committing states; strength of will and weakness of will; free will; addiction and compulsion; guilt, shame and regret; evil; self-knowledge and self-deception; and, virtues and character traits.
This course is a CI-M course.
The class covers the analysis and modeling of stochastic processes. Topics include measure theoretic probability, martingales, filtration, and stopping theorems, elements of large deviations theory, Brownian motion and reflected Brownian motion, stochastic integration and Ito calculus and functional limit theorems. In addition, the class will go over some applications to finance theory, insurance, queueing and inventory models.
The seminar explores current issues in space policy as well as the historical roots for the issues. Emphasis on critical policy discussion combined with serious technical analysis. The range of issues covers national security space policy, civil space policy, as well as commercial space policy. Issues explored include: the GPS dilemma, the International Space Station choices, commercial launch from foreign countries, and the fate of satellite-based cellular systems.
This design course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; preclinical testing for safety and efficacy, including risk/benefit ratio assessment evaluation of clinical performance and design of clinical trials. Student project materials are drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants.
The central theme of this course is the interaction of radiation with biological material. The course is intended to provide a broad understanding of how different types of radiation deposit energy, including the creation and behavior of secondary radiations; of how radiation affects cells and why the different types of radiation have very different biological effects. Topics will include: the effects of radiation on biological systems including DNA damage; in vitro cell survival models; and in vivo mammalian systems. The course covers radiation therapy, radiation syndromes in humans and carcinogenesis. Environmental radiation sources on earth and in space, and aspects of radiation protection are also discussed. Examples from the current literature will be used to supplement lecture material.
Electromagnetic Theory covers the basic principles of electromagnetism: experimental basis, electrostatics, magnetic fields of steady currents, motional e.m.f. and electromagnetic induction, Maxwell's equations, propagation and radiation of electromagnetic waves, electric and magnetic properties of matter, and conservation laws. This is a graduate level subject which uses appropriate mathematics but whose emphasis is on physical phenomena and principles.
This course explores how and why Japan, a late-comer to modernization, emerged as an industrial power and the world's second-richest nation, notwithstanding its recent difficulties. We are particularly concerned with the historical development of technology in Japan especially after 1945, giving particular attention to the interplays between business, ideology, technology, and culture. We will discuss key historical phenomena that symbolize modern Japan as a technological power in the world; specific examples to be discussed in class include kamikaze aircraft, the Shinkansen high-speed bullet train, Godzilla, and anime.
This course studies basic concepts of financial and managerial reporting. The viewpoint is that of readers of financial and managerial reports rather than the accountants who prepare them.
This course is designed to allow participants to engage in the exploration of the grammatical structure of a language that is unknown to them (and typically to the instructors as well). In some ways it simulates traditional field methods research. In terms of format, we work in both group and individual meetings with the consultant. Each student identifies some grammatical construction (e.g. wh questions, agreement, palatalization, interrogative intonation) to focus their research: they elicit and share data and write a report on the material gathered that is to be turned in at the end of the term. Ideally, we can put together a volume of grammatical sketches.
The first three to four weeks of the term, our group meetings will explore the basic phonology, morphology and surface syntax for a first pass overview of the language, looking for interesting areas to be explored in more detail later. During this period individual sessions can review material from the general session as well as explore new areas. At roughly the fifth meeting, individual students (typically two to three per session) guide the group elicitations to explore their research topic.
This course is an introduction to copyright law and American law in general. Topics covered include: structure of federal law; basics of legal research; legal citations; how to use LexisNexis®; the 1976 Copyright Act; copyright as applied to music, computers, broadcasting, and education; fair use; Napster®, Grokster®, and Peer-to-Peer file-sharing; Library Access to Music Project; The 1998 Digital Millennium Copyright Act; DVDs and encryption; software licensing; the GNU® General Public License and free software.
This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.