Online courses directory (2511)
This course deals with the experimental and theoretical aspects of chemical reaction kinetics, including transition-state theories, molecular beam scattering, classical techniques, quantum and statistical mechanical estimation of rate constants, pressure-dependence and chemical activation, modeling complex reacting mixtures, and uncertainty/sensitivity analyses. Reactions in the gas phase, liquid phase, and on surfaces are discussed with examples drawn from atmospheric, combustion, industrial, catalytic, and biological chemistry.
This course covers the complete cycle of designing an ocean system using computational design tools for the conceptual and preliminary design stages. Students complete the projects in teams with each student responsible for a specific subsystem. Lectures cover such topics as hydrodynamics; structures; power and thermal aspects of ocean vehicles; environment, materials, and construction for ocean use; and generation and evaluation of design alternatives. The course focuses on innovative design concepts chosen from high-speed ships, submersibles, autonomous vehicles, and floating and submerged deep-water offshore platforms. Lectures on ethics in engineering practice are included, and instruction and practice in oral and written communication is provided.
This course explores the creative dialectic—and sometimes conflict—between sociology and urban policy and design. Topics include the changing conceptions of "community," the effects of neighborhood characteristics on individual outcomes, the significance of social capital and networks, the drivers of categorical inequality, and the interaction of social structure and political power. Students will examine key theoretical paradigms that have constituted sociology since its founding, assess how and why they have changed over time, and discuss the implications of these shifts for urban research and planning practice.
This seminar took place at the Massachusetts Correctional Institution in Norfolk, MA, with half the class from MIT and half of the class from MCI Norfolk via the Boston University Prison Education Program. The location and composition of the class was chosen based on the belief that bringing together students of sociology and urban studies who are incarcerated with those who are at MIT would create a unique and valuable environment in which to generate new knowledge about our social world and the repeated mechanisms that contribute to persistent socio-economic inequality and other pressing social problems.
This subject is on regional energy-environmental modeling rather than on general energy-environmental policies, but the models should have some policy relevance. We will start with some discussion of green accounting issues; then, we will cover a variety of theoretical and empirical topics related to spatial energy demand and supply, energy forecasts, national and regional energy prices, and environmental implications of regional energy consumption and production. Where feasible, the topics will have a spatial dimension. This is a new seminar, so we expect students to contribute material to the set of readings and topics covered during the semester.
This subject introduces the key concepts and formalism of quantum mechanics and their relevance to topics in current research and to practical applications. Starting from the foundation of quantum mechanics and its applications in simple discrete systems, it develops the basic principles of interaction of electromagnetic radiation with matter.
Topics covered are composite systems and entanglement, open system dynamics and decoherence, quantum theory of radiation, time-dependent perturbation theory, scattering and cross sections. Examples are drawn from active research topics and applications, such as quantum information processing, coherent control of radiation-matter interactions, neutron interferometry and magnetic resonance.
The purpose of this course is to discuss modern techniques of generation of x-ray photons and neutrons and then follow with selected applications of newly developed photon and neutron scattering spectroscopic techniques to investigations of properties of condensed matter which are of interest to nuclear engineers.
8.962 is MIT's graduate course in general relativity, which covers the basic principles of Einstein's general theory of relativity, differential geometry, experimental tests of general relativity, black holes, and cosmology.
This course introduces finite element methods for the analysis of solid, structural, fluid, field, and heat transfer problems. Steady-state, transient, and dynamic conditions are considered. Finite element methods and solution procedures for linear and nonlinear analyses are presented using largely physical arguments. The homework and a term project (for graduate students) involve use of the general purpose finite element analysis program ADINA. Applications include finite element analyses, modeling of problems, and interpretation of numerical results.
This course provides a brief introduction to the field of biocatalysis in the context of process design. Fundamental topics include why and when one may choose to use biological systems for chemical conversion, considerations for using free enzymes versus whole cells, and issues related to design and development of bioconversion processes. Biological and engineering problems are discussed as well as how one may arrive at both biological and engineering solutions.
This course asks students to consider the ways in which social theorists, institutional reformers, and political revolutionaries in the 17th through 19th centuries seized upon insights developed in the natural sciences and mathematics to change themselves and the society in which they lived. Students study trials, art, literature and music to understand developments in Europe and its colonies in these two centuries. Covers works by Newton, Locke, Voltaire, Rousseau, Marx, and Darwin.