Online courses directory (1728)
This is the second of five modules to introduce concepts and current frontiers of atomic physics and to prepare you for cutting-edge research:
8.421.2x: Atomic structure and atoms in external field
8.421.3x: Atom-Light Interactions 1 -- Matrix elements and quantized field
8.421.4x: Atom-Light interactions 2 -- Line broadening and two-photon transitions
The second module, 8.421.2x, describes atomic structure, including electronic levels, fine structure, hyperfine structure and Lamb shift. You will then learn about how electric and magnetic fields shift atomic levels. The discussion of time-dependent electric fields prepares you for the interactions of atoms with light and for the dressed atom picture.
At MIT, the content of the five modules makes the first of a two-semester sequence (8.421 and 8.422) for graduate students interested in Atomic, Molecular, and Optical Physics. This sequence is required for Ph.D. students doing research in this field.
In these modules you will learn about the interaction of radiation with atoms: resonance; absorption, stimulated and spontaneous emission; methods of resonance, dressed atom formalism, masers and lasers, cavity quantum electrodynamics; structure of simple atoms, behavior in very strong fields; fundamental tests: time reversal, parity violations, Bell's inequalities; and experimental methods.
Completing the two-course sequence allows you to pursue advanced study and research in cold atoms, as well as specialized topics in condensed matter physics.
FAQ
Who can register for this course?
Unfortunately, learners from Iran, Cuba, Sudan and the Crimea region of Ukraine will not be able to register for this course at the present time. While edX has received a license from the U.S. Office of Foreign Assets Control (OFAC) to offer courses to learners from Iran and Sudan our license does not cover this course.
Separately, EdX has applied for a license to offer courses to learners in the Crimea region of Ukraine, but we are awaiting a determination from OFAC on that application. We are deeply sorry the U.S. government has determined that we have to block these learners, and we are working diligently to rectify this situation as soon as possible.
Course image uses graphic by SVG by Indolences. Recoloring and ironing out some glitches done by Rainer Klute. [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons
This is the last of five modules to introduce concepts and current frontiers of atomic physics and to prepare you for cutting-edge research:
8.421.2x: Atomic structure and atoms in external field
8.421.3x: Atom-Light Interactions 1 -- Matrix elements and quantized field
8.421.4x: Atom-Light interactions 2 -- Line broadening and two-photon transitions
8.421.5x: Coherence
This fifth module, 8.421.5x, looks at a central theme of atomic physics - coherence. This includes coherence of single atoms for two-level systems and three-level systems, and coherence between atoms, which can result in superradiant behavior.
At MIT, the content of the five modules makes the first of a two-semester sequence (8.421 and 8.422) for graduate students interested in Atomic, Molecular, and Optical Physics. This sequence is required for Ph.D. students doing research in this field.
In these modules you will learn about the interaction of radiation with atoms: resonance; absorption, stimulated and spontaneous emission; methods of resonance, dressed atom formalism, masers and lasers, cavity quantum electrodynamics; structure of simple atoms, behavior in very strong fields; fundamental tests: time reversal, parity violations, Bell's inequalities; and experimental methods.
Completing the two-course sequence allows you to pursue advanced study and research in cold atoms, as well as specialized topics in condensed matter physics.
FAQ
Who can register for this course?
Unfortunately, learners from Iran, Cuba, Sudan and the Crimea region of Ukraine will not be able to register for this course at the present time. While edX has received a license from the U.S. Office of Foreign Assets Control (OFAC) to offer courses to learners from Iran and Sudan our license does not cover this course.
Separately, EdX has applied for a license to offer courses to learners in the Crimea region of Ukraine, but we are awaiting a determination from OFAC on that application. We are deeply sorry the U.S. government has determined that we have to block these learners, and we are working diligently to rectify this situation as soon as possible.
Course image uses graphic by SVG by Indolences. Recoloring and ironing out some glitches done by Rainer Klute. [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons
This is the first of five modules to introduce concepts and current frontiers of atomic physics, and to prepare you for cutting-edge research:
8.421.1x: Resonance
8.421.2x: Atomic structure and atoms in external field
8.421.3x: Atom-Light Interactions 1 -- Matrix elements and quantized field
8.421.4x: Atom-Light interactions 2 -- Line broadening and two-photon transitions
The first module, 8.421.1x, introduces resonance as an overarching theme of the course. You will deepen your understanding of the physics of resonance by examining systems using both classical and quantum techniques. Of special importance is the precession of a magnetic moments in time-dependent magnetic fields.
At MIT, the content of the five modules makes the first of a two-semester sequence (8.421 and 8.422) for graduate students interested in Atomic, Molecular, and Optical Physics. This sequence is required for Ph.D. students doing research in this field.
In these modules you will learn about the interaction of radiation with atoms: resonance; absorption, stimulated and spontaneous emission; methods of resonance, dressed atom formalism, masers and lasers, cavity quantum electrodynamics; structure of simple atoms, behavior in very strong fields; fundamental tests: time reversal, parity violations, Bell's inequalities; and experimental methods.
Completing the five-course sequence allows you to pursue advanced study and research in cold atoms, as well as specialized topics in condensed matter physics.
FAQ
Who can register for this course?
Unfortunately, learners from Iran, Cuba, Sudan and the Crimea region of Ukraine will not be able to register for this course at the present time. While edX has received a license from the U.S. Office of Foreign Assets Control (OFAC) to offer courses to learners from Iran and Sudan our license does not cover this course.
Separately, EdX has applied for a license to offer courses to learners in the Crimea region of Ukraine, but we are awaiting a determination from OFAC on that application. We are deeply sorry the U.S. government has determined that we have to block these learners, and we are working diligently to rectify this situation as soon as possible.
Course image uses graphic by SVG by Indolences. Recoloring and ironing out some glitches done by Rainer Klute. [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons
This is the third of five modules to introduce concepts and current frontiers of atomic physics and to prepare you for cutting-edge research:
8.421.2x: Atomic structure and atoms in external field
8.421.3x: Atom-Light Interactions 1 -- Matrix elements and quantized field
8.421.4x: Atom-Light interactions 2 -- Line broadening and two-photon transitions
The third module, 8.421.3x, covers how atoms interact with light. First, dipole and higher order couplings are introduced, and concrete examples for selection rules and matrix elements are given. After quantizing the electromagnetic field and introducing photons, the Jaynes-Cummings model and vacuum Rabi oscillations are presented. Coherent and incoherent time evolution are discussed, also in the framework of Einstein's A and B coefficients.
At MIT, the content of the five modules makes the first of a two-semester sequence (8.421 and 8.422) for graduate students interested in Atomic, Molecular, and Optical Physics. This sequence is required for Ph.D. students doing research in this field.
In these modules you will learn about the interaction of radiation with atoms: resonance; absorption, stimulated and spontaneous emission; methods of resonance, dressed atom formalism, masers and lasers, cavity quantum electrodynamics; structure of simple atoms, behavior in very strong fields; fundamental tests: time reversal, parity violations, Bell's inequalities; and experimental methods.
Completing the two-course sequence allows you to pursue advanced study and research in cold atoms, as well as specialized topics in condensed matter physics.
FAQ
Who can register for this course?
Unfortunately, learners from Iran, Cuba, Sudan and the Crimea region of Ukraine will not be able to register for this course at the present time. While edX has received a license from the U.S. Office of Foreign Assets Control (OFAC) to offer courses to learners from Iran and Sudan our license does not cover this course.
Separately, EdX has applied for a license to offer courses to learners in the Crimea region of Ukraine, but we are awaiting a determination from OFAC on that application. We are deeply sorry the U.S. government has determined that we have to block these learners, and we are working diligently to rectify this situation as soon as possible.
Course image uses graphic by SVG by Indolences. Recoloring and ironing out some glitches done by Rainer Klute. [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons
This is the fourth of five modules to introduce concepts and current frontiers of atomic physics and to prepare you for cutting-edge research:
8.421.2x: Atomic structure and atoms in external field
8.421.3x: Atom-Light Interactions 1 -- Matrix elements and quantized field
8.421.4x: Atom-Light interactions 2 -- Line broadening and two-photon transitions
The fourth module, 8.421.4x, includes a comprehensive discussion of line broadening effects, including Doppler effect, sidebands for trapped particles, power broadening, and effects of interactions and collisions. The concept of two-photon transitions is relevant for Raman processes and light scattering.
At MIT, the content of the five modules makes the first of a two-semester sequence (8.421 and 8.422) for graduate students interested in Atomic, Molecular, and Optical Physics. This sequence is required for Ph.D. students doing research in this field.
In these modules you will learn about the interaction of radiation with atoms: resonance; absorption, stimulated and spontaneous emission; methods of resonance, dressed atom formalism, masers and lasers, cavity quantum electrodynamics; structure of simple atoms, behavior in very strong fields; fundamental tests: time reversal, parity violations, Bell's inequalities; and experimental methods.
Completing the two-course sequence allows you to pursue advanced study and research in cold atoms, as well as specialized topics in condensed matter physics.
FAQ
Who can register for this course?
Unfortunately, learners from Iran, Cuba, Sudan and the Crimea region of Ukraine will not be able to register for this course at the present time. While edX has received a license from the U.S. Office of Foreign Assets Control (OFAC) to offer courses to learners from Iran and Sudan our license does not cover this course.
Separately, EdX has applied for a license to offer courses to learners in the Crimea region of Ukraine, but we are awaiting a determination from OFAC on that application. We are deeply sorry the U.S. government has determined that we have to block these learners, and we are working diligently to rectify this situation as soon as possible.
Course image uses graphic by SVG by Indolences. Recoloring and ironing out some glitches done by Rainer Klute. [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons
In this physics course, you will be introduced to the QED Hamiltonian (Quantum ElectroDynamics), and learn how to construct diagrams for light-atom interactions. Using your new tools you will study Van der Waals and Casimir interactions, resonant scattering and radiative corrections.
This course is a part of a series of courses to introduce concepts and current frontiers of atomic physics, and to prepare you for cutting-edge research:
- 8.422.1x: Quantum States and Dynamics of Photons
- 8.422.2x: Atom-photon Interactions
- 8.422.3x: Optical Bloch Equations and Open System Dynamics
- 8.422.4x: Light Forces and Laser Cooling
- 8.422.5x: Ultracold Atoms and Ions for Many-body Physics and Quantum Information Science
At MIT, the content of the five courses makes the second of a two-semester sequence (8.421 and 8.422) for graduate students interested in Atomic, Molecular, and Optical Physics. This sequence is required for Ph.D. students doing research in this field.
Completing the series allows you to pursue advanced study and research in cold atoms, as well as in specialized topics in condensed matter physics. In these five courses you will learn about the following topics:
- Quantum states and dynamics of photons
- Photon-atom interactions: basics and semiclassical approximations
- Open system dynamics
- Optical Bloch equations
- Applications and limits of the optical Bloch equations
- Dressed atoms
- Light force
- Laser cooling
- Cold atoms
- Evaporative cooling
- Bose-Einstein condensation
- Quantum algorithms and protocols
- Ion traps and magnetic traps
In this physics course, you will learn about the spontaneous and stimulated light force and friction force in molasses and optical standing waves. You will also study light forces in the dressed atom picture. The course will discuss the techniques of magneto-optical traps and sub-Doppler and sub-recoil cooling.
This course is a part of a series of courses to introduce concepts and current frontiers of atomic physics, and to prepare you for cutting-edge research:
- 8.422.1x: Quantum states and dynamics of photons
- 8.422.2x: Atom-photon interactions
- 8.422.3x: Optical Bloch equations and open system dynamics
- 8.422.4x: Light forces and laser cooling
- 8.422.5x: Ultracold atoms and ions for many-body physics and quantum information science
At MIT, the content of the five courses makes the second of a two-semester sequence (8.421 and 8.422) for graduate students interested in Atomic, Molecular, and Optical Physics. This sequence is required for Ph.D. students doing research in this field.
Completing the series allows you to pursue advanced study and research in cold atoms, as well as specialized topics in condensed matter physics. In these five courses you will learn about the following topics:
- quantum states and dynamics of photons
- photon-atom interactions: basics and semiclassical approximations
- open system dynamics
- optical Bloch equations
- applications and limits of the optical Bloch equations
- dressed atoms
- light force
- laser cooling
- cold atoms
- evaporative cooling
- Bose-Einstein condensation
- quantum algorithms and protocols
- ion traps and magnetic traps
This physics course presents a general derivation of the master equation and the optical Bloch equations. You will learn about various solutions of the optical Bloch equations, and you will discuss the quantum Monte Carlo wavefunction approach. The course will conclude with a discussion of unraveling open system quantum dynamics.
This course is a part of a series of courses to introduce concepts and current frontiers of atomic physics, and to prepare you for cutting-edge research:
- 8.422.1x: Quantum states and dynamics of photons
- 8.422.2x: Atom-photon interactions
- 8.422.3x: Optical Bloch equations and open system dynamics
- 8.422.4x: Light forces and laser cooling
- 8.422.5x: Ultracold atoms and ions for many-body physics and quantum information science
At MIT, the content of the five courses makes the second of a two-semester sequence (8.421 and 8.422) for graduate students interested in Atomic, Molecular, and Optical Physics. This sequence is required for Ph.D. students doing research in this field.
Completing the series allows you to pursue advanced study and research in cold atoms, as well as specialized topics in condensed matter physics. In these five courses you will learn about the following topics:
- quantum states and dynamics of photons
- photon-atom interactions: basics and semiclassical approximations
- open system dynamics
- optical Bloch equations
- applications and limits of the optical Bloch equations
- dressed atoms
- light force
- laser cooling
- cold atoms
- evaporative cooling
- Bose-Einstein condensationquantum algorithms and protocols
- ion traps and magnetic traps.
In this physics course, you will learn about the quantum description of light with applications to squeezed states of light and teleportation as well as the non-classical states of light and single photons. You will learn how to do metrology with light. You will also learn about correlations with photons as well as atom correlation functions.
This course is a part of a series of courses to introduce fundamental concepts and current frontiers of atomic physics, and to prepare you for cutting-edge research:
- 8.422.1x: Quantum States and Dynamics of Photons
- 8.422.2x: Atom-photon Interactions
- 8.422.3x: Optical Bloch Equations and Open System Dynamics
- 8.422.4x: Light Forces and Laser Cooling
- 8.422.5x: Ultracold Atoms and Ions for Many-body Physics and Quantum Information Science
At MIT, the content of these five courses makes up the second of a two-semester sequence (8.421 and 8.422) for graduate students interested in Atomic, Molecular, and Optical Physics. This sequence is required for Ph.D. students doing research in this field.
In these five courses you will learn about the following topics: quantum states and dynamics of photons, photon-atom interactions: basics and semiclassical approximations, open system dynamics, optical Bloch equations, applications and limits of the optical Bloch equations, dressed atoms, light force, laser cooling, cold atoms, evaporative cooling, Bose-Einstein condensation, quantum algorithms and protocols, ion traps and magnetic traps.
Completing this series allows you to pursue advanced study and research in cold atoms, as well as specialized topics in condensed matter physics.
In this physics course you will learn about ultracold bosons and fermions, and you will hear from Prof. Ketterle about Bose-Einstein condensation (BEC). Prof. Ketterle was among the first to achive BEC in the lab and was awarded the Nobel prize in 2001 for his work along with Eric Cornell and Carl Wieman. You will also learn about weakly interacting Bose gases, as well as superfluid to Mott insulator transition, BEC-BCS crossover, trapped ions and quantum gates with ions.
This course is a part of a series of courses to introduce concepts and current frontiers of atomic physics, and to prepare you for cutting-edge research:
- 8.422.1x: Quantum states and dynamics of photons
- 8.422.2x: Atom-photon interactions
- 8.422.3x: Optical Bloch equations and open system dynamics
- 8.422.4x: Light forces and laser cooling
- 8.422.5x: Ultracold atoms and ions for many-body physics and quantum information science
At MIT, the content of the five courses makes the second of a two-semester sequence (8.421 and 8.422) for graduate students interested in Atomic, Molecular, and Optical Physics. This sequence is required for Ph.D. students doing research in this field.
Completing the series allows you to pursue advanced study and research in cold atoms, as well as specialized topics in condensed matter physics. In these five courses you will learn about the following topics:
- quantum states and dynamics of photons
- photon-atom interactions: basics and semiclassical approximations
- open system dynamics
- optical Bloch equations
- applications and limits of the optical Bloch equations
- dressed atoms
- light force
- laser cooling
- cold atoms
- evaporative cooling
- Bose-Einstein condensation
- quantum algorithms and protocols
- ion traps and magnetic traps.
Robots are rapidly evolving from factory workhorses, which are physically bound to their work-cells, to increasingly complex machines capable of performing challenging tasks in our daily environment. The objective of this course is to provide the basic concepts and algorithms required to develop mobile robots that act autonomously in complex environments. The main emphasis is put on mobile robot locomotion and kinematics, environment perception, probabilistic map based localization and mapping, and motion planning. The lectures and exercises of this course introduce several types of robots such as wheeled robots, legged robots and drones.
This lecture closely follows the textbook Introduction to Autonomous Mobile Robots by Roland Siegwart, Illah Nourbakhsh, Davide Scaramuzza, The MIT Press, second edition 2011.
In recent years, flying robots such as miniature helicopters or quadrotors have received a large gain in popularity. Potential applications range from aerial filming over remote visual inspection of industrial sites to automatic 3D reconstruction of buildings. Navigating a quadrotor manually requires a skilled pilot and constant concentration. Therefore, there is a strong scientific interest to develop solutions that enable quadrotors to fly autonomously and without constant human supervision. This is a challenging research problem because the payload of a quadrotor is uttermost constrained and so both the quality of the onboard sensors and the available computing power is strongly limited.
In this course, we will introduce the basic concepts for autonomous navigation for quadrotors. The following topics will be covered:
- 3D geometry,
- probabilistic state estimation,
- visual odometry, SLAM, 3D mapping,
- linear control.
In particular, you will learn how to infer the position of the quadrotor from its sensor readings and how to navigate it along a trajectory.
The course consists of a series of weekly lecture videos that we be interleaved by interactive quizzes and hands-on programming tasks. For the flight experiments, we provide a browser-based quadrotor simulator which requires the students to write small code snippets in Python.
This course is intended for undergraduate and graduate students in computer science, electrical engineering or mechanical engineering. This course has been offered by TUM for the first time in summer term 2014 on EdX with more than 20.000 registered students of which 1400 passed examination. The MOOC is based on the previous TUM lecture “Visual Navigation for Flying Robots” which received the TUM TeachInf best lecture award in 2012 and 2013.
FAQ
Do I need to buy a textbook?
No, all required materials will be provided within the courseware. However, if you are interested, we recommend the following additional materials:
- This course is based on the TUM lecture Visual Navigation for Flying Robots. The course website contains lecture videos (from last year), additional exercises and the full syllabus: http://vision.in.tum.de/teaching/ss2013/visnav2013
- Probabilistic Robotics. Sebastian Thrun, Wolfram Burgard and Dieter Fox. MIT Press, 2005.
- Computer Vision: Algorithms and Applications. Richard Szeliski. Springer, 2010.
Do I need to build/own a quadrotor?
No, we provide a web-based quadrotor simulator that will allow you to test your solutions in simulation. However, we took special care that the code you will be writing will be compatible with a real Parrot Ardrone quadrotor. So if you happen to have a Parrot Ardrone quadrotor, we encourage you to try out your solutions for real.
In this course, you’ll be introduced to virtual network configuration through the Microsoft Azure Portal and network configuration files. You’ll also see how to use network services to configure and load balance network traffic using tools such as Azure DNS. Load Balancer, Azure Traffic Manager, and Application Gateway. And because this is about the cloud, you’ll see how to connect your on-premises computers to Azure virtual networks as well as establishing connectivity between sites.
This course focuses on Azure Storage as a service that scales to meet the data storage demand, allows data access anywhere at any time based on an internet connection, provides a platform for building internet-scale applications, and can store structured and non-structured data in the appropriate format in the cloud.
You’ll be introduced to managing storage through Azure Storage accounts as well as the different types of accounts a storage account can contain.
Banking and financial markets encompass the ‘ecosystem’ that (a) channelizes money from those who have it (i.e. savers/investors) to those who need it (i.e. borrowers) and (b) facilitates cross-border flow of funds through exchange of currencies. The ecosystem of banks and financial markets (including Central Banks) has deepened in size, sophistication and complexity over the years. However, in recent times they have also been the subject of abuse, failures and economic distress in several countries resulting in a ‘contagion’ that has concurrently affected several countries around the world!
More recently, and perhaps more importantly, thanks to the liberalization of most economies, the world has witnessed an exponential increase in the free flow of capital across countries. Banking institutions and financial markets, being the predominant conduit for such free flow of capital across countries, have therefore become even more "globally interconnected." Such a globally interconnected financial system, combined with regulatory systems that are country-specific and hence varying considerably in rigor and implementation, has further compounded the risks and the consequent contagion, as witnessed in the global financial meltdown that was triggered in 2008.
This course on ‘Banking and Financial Markets’ comprises two parts:
In an earlier course, which was introductory in nature, we had looked at the theory and concepts underlying banking and financial markets, the products and instruments offered and the associated market mechanisms.
In this more advance course, we will look at Banking and Financial Markets from a Risk Management Perspective:
- The embedded risks in any financial system: credit risk, interest rate risk, foreign exchange risk, operational risk, off-balance sheet risk, etc.
- The contagion effect of these risks, as witnessed in the 2008 global financial meltdown
- How are these risks identified, measured and managed, using several risk mitigation techniques and sound regulatory oversight.
En este curso se recordará lo que es una ecuación con una única incógnita y cómo solucionarla. A partir de ahí se tratarán:
- Los sistemas de ecuaciones lineales. Cómo se definen, cómo se clasifican y cómo se resuelven utilizando el método de Gauss
- El concepto de matriz y las operaciones entre matrices
- El cálculo de matrices inversas mediante el método de Gauss y el de los adjuntos
- Una introducción a las ecuaciones matriciales
- El determinante de una matriz cuadrada y su cálculo
- El rango de una matriz
- La expresión matricial de un sistema de ecuaciones lineales y la regla de Cramer
Este curso se concibe como una revisión de los conceptos básicos del cálculo diferencial, necesarios para los primeros cursos de aquellos estudios universitarior en los que se imparte matemáticas. Nuestro objetivo es proporcionar un curso básico sobre funciones y derivadas, incluyendo sus aplicaciones.
Este curso se concibe como una revisión de los conceptos básicos del cálculo diferencial, necesarios para los primeros cursos de aquellos estudios universitarios en los que se imparte matemáticas. Nuestro objetivo es proporcionar un curso básico sobre funciones y derivadas, incluyendo sus aplicaciones.
Este curso está, concebido como una preparación mínima necesaria para los primeros cursos de ingeniería y otros estudios en los que se imparten matemáticas. En él trabajaremos:
- El concepto de conjunto y sus operaciones
- La notación matemática elemental
- Los diferentes tipos de números: naturales, enteros, racionales, irracionales y reales
- Finalmente aprenderás los conceptos básicos necesarios sobre números complejos
Introductory Mandarin is the first in a series of six courses designed to teach you how to speak Mandarin Chinese. This course will introduce you to the basic language you will need to eat, live, and get around in Mandarin speaking countries.
Since this is a language course, we recommend taking this course with a friend or group of friends. Practicing with others by speaking the language will help you learn it more effectively. Additionally, Mandarin is a tonal language, which means that in order to truly master it, you will need to say the words out loud! Join the community of over 900 million native Mandarin speakers and start learning today!
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.