Courses tagged with "Chemical reactions (stoichiometry)" (97)
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health and disease.
Acknowledgements
The study materials, problem sets, and quiz materials used during Spring 2005 for 7.014 include contributions from past instructors, teaching assistants, and other members of the MIT Biology Department affiliated with course 7.014. Since the following works have evolved over a period of many years, no single source can be attributed.
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.
Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
What makes living things tick?. Homeostasis. A Voyage to Mars: Bone Loss in Space. Bread Mold Kills Bacteria.
This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.
This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.
How do we sense hunger? How do we sense pain? What causes growth in our bodies? How are we protected from pathogens? The answer to many of these questions involves small polymers of amino acids known as peptides. Peptides are broadly used as signal molecules for intercellular communication in prokaryotes, plants, fungi, and animals. Peptide signals in animals include vast numbers of peptide hormones, growth factors and neuropeptides. In this course, we will learn about molecular bases of peptide signaling. In addition, peptides potentially can be used as potent broad-spectrum antibiotics and hence might define novel therapeutic agents.
This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
This course covers current understanding of, and modern approaches to human disease, emphasizing the molecular and cellular basis of both genetic disease and cancer. Topics include: The Genetics of Simple and Complex Traits; Karyotypic Analysis and Positional Cloning; Genetic Diagnosis; The Roles of Oncogenes and Tumor Suppressors in Tumor Initiation, Progression, and Treatment; The Interaction between Genetics and Environment; Animal Models of Human Disease; Cancer; and Conventional and Gene Therapy Treatment Strategies.
This course covers amino acid sequence control of protein folding, misfolding, amyloid polymerization and aggregation. Readings and discussions address topics such as chaperone structure and function, folding and assembly of fibrous proteins, and pathologies associated with protein misfolding and aggregation in Alzheimer's, Parkinson's, Huntington's and other protein deposition diseases. Students are required to write and present a research paper.
Interaktiver MOOC mit Operationsvideos der Universität Tübingen. Chirurgen aller Fachrichtungen und Anatomen erklären das zentrale Fach der Medizin im chirurgisch-operativen Kontext.
Interaktiver MOOC mit spannenden anatomischen und medizinischen Videos der Universität Tübingen. Anatomen und Kliniker erklären die Anatomie der Kopf- und Hals-Region im klinischen und chirurgisch-operativen Kontext.
Have you ever considered going to a pharmacy to order some new cardiomyocytes (heart muscle cells) for your ailing heart? It might sound crazy, but recent developments in stem cell science have made this concept not so futuristic. In this course, we will explore the underlying biology behind the idea of using stem cells to treat disease, specifically analyzing the mechanisms that enable a single genome to encode multiple cell states ranging from neurons to fibroblasts to T cells. Overall, we hope to provide a comprehensive overview of this exciting new field of research and its clinical relevance.
This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
In this course, we will investigate the diverse types and functions of different RNA species, with a focus on "non-coding RNAs," i.e. those that do not directly encode proteins. The course will convey both the exciting discoveries in and frontiers of RNA research that are propelling our understanding of cell biology as well as the intellectual and experimental approaches responsible.
The molecular biology revolution firmly established the role of DNA as the primary carrier of genetic information and proteins as the primary effector molecules of the cell. The intermediate between DNA and proteins is RNA, which initially was regarded as the "molecule in the middle" of the central dogma. This view has been transformed over the past two decades, as RNA has become recognized as a critical regulator of cellular processes.
Bacteria and fungi have produced antibiotics, small molecules that can prevent the growth of or kill bacteria by inhibiting essential biological pathways, as a defense mechanism long before humans walked the earth. The discovery of antibiotics and their implementation in the clinic radically changed modern medicine, saving countless lives by treating infections that were once difficult to cure, such as syphilis, strep throat and tuberculosis. During this course, we will cover many aspects of antibiotics including techniques used to discover these inhibitors, their mode of action and use in medicine. For example, we will learn about the techniques used to discover antibiotics, such as penicillin and vancomycin. We will discuss antibiotic-resistant bacteria and the molecular mechanisms underlying resistance, including horizontal gene transfer, point mutations and efflux pumps. Additionally, we will learn about pioneering work to treat infections with engineered antimicrobial peptides and microbiome replacement therapies. The course will focus on the primary research literature, and we will learn practical laboratory techniques, experimental design and how to interpret data and critique the conclusions offered by authors. Students will have the opportunity to visit a local hospital to learn about the process of treatment with antibiotics and what is being done to avoid the continuous emergence of antibiotic resistance.
This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
This is a seminar based on research literature. Papers covered are selected to illustrate important problems and approaches in the field of computational and systems biology, and provide students a framework from which to evaluate new developments.
The MIT Initiative in Computational and Systems Biology (CSBi) is a campus-wide research and education program that links biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis and modeling of complex biological phenomena. This course is one of a series of core subjects offered through the CSB Ph.D. program, for students with an interest in interdisciplinary training and research in the area of computational and systems biology.
This independent experimental study course is designed to allow students with a strong interest in independent research to fulfill the project laboratory requirement for the Biology Department Program in the context of a research laboratory at MIT. The research should be a continuation of a previous project under the direction of a member of the Biology Department faculty.
This course provides instruction and practice in written and oral communication. Journal club discussions are used to help students evaluate and write scientific papers.
In the western world, approximately 10–15% of couples suffer from subfertility. Consequently, over 5 million babies have been born thanks to assisted reproductive technologies, and more than half of those have been born in the past six years alone. This class will cover the basic biology behind fertility and explore the etiology of infertility. We will highlight open questions in reproductive biology, familiarize students with both tried-and-true and emerging reproductive technologies, and explore the advantages and pitfalls of each.
This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
Infectious diseases represent a serious global public health problem. They have the potential to kill millions of people, whether they emerge naturally as outbreaks or pandemics, or deliberately through bioterrorism. Some examples of diseases caused by emerging pathogens are the Bubonic Plague, Toxoplasmosis, African Sleeping Sickness, and Chagas Disease. Each day, infectious disease scientists serve on the front lines protecting us from such threats. In this course students will learn how to design and critique experiments through the discussion of primary research articles that explore the molecular basis of disease caused by emerging pathogens.
This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.