Courses tagged with "Customer Service Certification Program" (283)
This course is designed for high school students preparing to take the AP* Statistics Exam. * AP Statistics is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product.
Principles of Applied Mathematics is a study of illustrative topics in discrete applied mathematics including sorting algorithms, information theory, coding theory, secret codes, generating functions, linear programming, game theory. There is an emphasis on topics that have direct application in the real world.
This course was recently revised to meet the MIT Undergraduate Communication Requirement (CR). It covers the same content as 18.310, but assignments are structured with an additional focus on writing.
18.311 Principles of Continuum Applied Mathematics covers fundamental concepts in continuous applied mathematics, including applications from traffic flow, fluids, elasticity, granular flows, etc. The class also covers continuum limit; conservation laws, quasi-equilibrium; kinematic waves; characteristics, simple waves, shocks; diffusion (linear and nonlinear); numerical solution of wave equations; finite differences, consistency, stability; discrete and fast Fourier transforms; spectral methods; transforms and series (Fourier, Laplace). Additional topics may include sonic booms, Mach cone, caustics, lattices, dispersion, and group velocity.
This course is an introduction to discrete applied mathematics. Topics include probability, counting, linear programming, number-theoretic algorithms, sorting, data compression, and error-correcting codes. This is a Communication Intensive in the Major (CI-M) course, and thus includes a writing component.
How should we interpret chance around us? Watch beautiful mathematical ideas emerge in a glorious historical tapestry as we discover key concepts in probability, perhaps as they might first have been unearthed, and illustrate their sway with vibrant applications taken from history and the world around.
This course introduces students to probability and random variables. Topics include distribution functions, binomial, geometric, hypergeometric, and Poisson distributions. The other topics covered are uniform, exponential, normal, gamma and beta distributions; conditional probability; Bayes theorem; joint distributions; Chebyshev inequality; law of large numbers; and central limit theorem.
This course, which is geared toward Freshmen, is an undergraduate seminar on mathematical problem solving. It is intended for students who enjoy solving challenging mathematical problems and who are interested in learning various techniques and background information useful for problem solving. Students in this course are expected to compete in a nationwide mathematics contest for undergraduates.
Project Laboratory in Mathematics is a course designed to give students a sense of what it's like to do mathematical research. In teams, students explore puzzling and complex mathematical situations, search for regularities, and attempt to explain them mathematically. Students share their results through professional-style papers and presentations.
This course site was created specifically for educators interested in offering students a taste of mathematical research. This site features extensive description and commentary from the instructors about why the course was created and how it operates.
The level of popularity you experienced in childhood and adolescence is still affecting you today in ways that you may not even realize. Learn about how psychologists study popularity and how these same concepts can be used in adulthood to be more successful at work, become better parents, and have a happier life.
This course provides an introduction to the theory and practice of quantum computation. Topics covered include: physics of information processing, quantum logic, quantum algorithms including Shor's factoring algorithm and Grover's search algorithm, quantum error correction, quantum communication, and cryptography.
This course is an introduction to the basics of random matrix theory, motivated by engineering and scientific applications.
This graduate-level subject explores various mathematical aspects of (discrete) random walks and (continuum) diffusion. Applications include polymers, disordered media, turbulence, diffusion-limited aggregation, granular flow, and derivative securities.
This course covers the fundamentals of mathematical analysis: convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, and the interchange of limit operations. It shows the utility of abstract concepts and teaches an understanding and construction of proofs. MIT students may choose to take one of three versions of Real Analysis; this version offers three additional units of credit for instruction and practice in written and oral presentation.
The three options for 18.100:
- Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible.
- Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the plane) and its point-set topology.
- Option C (18.100C) is a 15-unit variant of Option B, with further instruction and practice in written and oral communication. This fulfills the MIT CI requirement.
Other Versions
Related Content
Learn how to use regression models, the most important statistical analysis tool in the data scientist's toolkit. This is the seventh course in the Johns Hopkins Data Science Specialization.
Investigate the flexibility and power of project-oriented computational analysis, and enhance communication of information by creating visual representations of scientific data.
In this undergraduate level seminar series, topics vary from year to year. Students present and discuss the subject matter, and are provided with instruction and practice in written and oral communication. Some experience with proofs required. The topic for fall 2008: Computational algebra and algebraic geometry.
18.104 is an undergraduate level seminar for mathematics majors. Students present and discuss subject matter taken from current journals or books. Instruction and practice in written and oral communication is provided. The topics vary from year to year. The topic for this term is Applications to Number Theory.
In this course, students take turns in giving lectures. For the most part, the lectures are based on Robert Osserman's classic book A Survey of Minimal Surfaces, Dover Phoenix Editions. New York: Dover Publications, May 1, 2002. ISBN: 0486495140.
This course is a seminar in topology. The main mathematical goal is to learn about the fundamental group, homology and cohomology. The main non-mathematical goal is to obtain experience giving math talks.
This is an advanced topics course in model theory whose main theme is simple theories. We treat simple theories in the framework of compact abstract theories, which is more general than that of first order theories. We cover the basic properties of independence (i.e., non-dividing) in simple theories, the characterization of simple theories by the existence of a notion of independence, and hyperimaginary canonical bases.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.