Courses tagged with "Customer Service Certification Program" (283)
This is a variation on 18.02 Multivariable Calculus. It covers the same topics as in 18.02, but with more focus on mathematical concepts.
Acknowledgement
Prof. McKernan would like to acknowledge the contributions of Lars Hesselholt to the development of this course.
Calculus One is a first introduction to differential and integral calculus, emphasizing engaging examples from everyday life.
Calculus One is a first introduction to differential and integral calculus, emphasizing engaging examples from everyday life.
Calculus Two: Sequences and Series is an introduction to sequences, infinite series, convergence tests, and Taylor series. The course emphasizes not just getting answers, but asking the question "why is this true?"
This is an undergraduate course on differential calculus in one and several dimensions. It is intended as a one and a half term course in calculus for students who have studied calculus in high school. The format allows it to be entirely self contained, so that it is possible to follow it without any background in calculus.
18.014, Calculus with Theory, covers the same material as 18.01 (Single Variable Calculus), but at a deeper and more rigorous level. It emphasizes careful reasoning and understanding of proofs. The course assumes knowledge of elementary calculus.
This course provides a brisk, challenging, and dynamic treatment of differential and integral calculus, with an emphasis on conceptual understanding and applications to the engineering, physical, and social sciences.
The goal of this class is to prove that category theory is a powerful language for understanding and formalizing common scientific models. The power of the language will be tested by its ability to penetrate into taken-for-granted ideas, either by exposing existing weaknesses or flaws in our understanding, or by highlighting hidden commonalities across scientific fields.
Learn the concepts and methods of linear algebra, and how to use them to think about computational problems arising in computer science. Coursework includes building on the concepts to write small programs and run them on real data.
Ders çok değişkenli fonksiyonlardaki ikili dizinin birincisidir. Burada çok değişkenli fonksiyonlardaki temel türev ve entegral kavramlarını geliştirmek ve bu konulardaki problemleri çözmekteki temel yöntemleri sunmaktadır. Ders gerçek yaşamdan gelen uygulamaları da tanıtmaya önem veren “içerikli yaklaşımla” tasarlanmıştır.
Ders çok değişkenli fonksiyonlardaki iki derslik dizinin ikincisidir. Birinci ders türev ve entegral kavramlarını geliştirmekte ve bu konulardaki problemleri temel çözme yöntemlerini sunmaktadır. Bu ders, birinci derste geliştirilen temeller üzerine daha ileri konuları işlemekte ve daha kapsamlı uygulamalar ve çözümlü örnekler sunmaktadır. Ders gerçek yaşamdan gelen uygulamaları da tanıtmaya önem veren “içerikli yaklaşımla” tasarlanmıştır.
This course analyzes combinatorial problems and methods for their solution. Topics include: enumeration, generating functions, recurrence relations, construction of bijections, introduction to graph theory, network algorithms, and extremal combinatorics.
Combinatorial Optimization provides a thorough treatment of linear programming and combinatorial optimization. Topics include network flow, matching theory, matroid optimization, and approximation algorithms for NP-hard problems.
This course serves as an introduction to major topics of modern enumerative and algebraic combinatorics with emphasis on partition identities, young tableaux bijections, spanning trees in graphs, and random generation of combinatorial objects. There is some discussion of various applications and connections to other fields.
This course offers participants an opportunity to engage in a community of learners using an inquiry cycle focusing on math formative assessments as a strategy for implementing CCSS in math. It focuses on the implementation of a Classroom Challenge: a 1 – 2 day lesson developed by the Mathematics Assessment Project (MAP) based on formative assessment and the CCSSM.
In this course students will learn about Noetherian rings and modules, Hilbert basis theorem, Cayley-Hamilton theorem, integral dependence, Noether normalization, the Nullstellensatz, localization, primary decomposition, DVRs, filtrations, length, Artin rings, Hilbert polynomials, tensor products, and dimension theory.
After sequencing genomes, we would like to compare them. We will see that dynamic programming is a powerful algorithmic tool when we compare two genes (i.e., short sequences of DNA) or two proteins. When we "zoom out" to compare entire genomes, we will employ combinatorial algorithms.
This course explored topics such as complex algebra and functions, analyticity, contour integration, Cauchy's theorem, singularities, Taylor and Laurent series, residues, evaluation of integrals, multivalued functions, potential theory in two dimensions, Fourier analysis and Laplace transforms.
Understanding how the brain works is one of the fundamental challenges in science today. This course will introduce you to basic computational techniques for analyzing, modeling, and understanding the behavior of cells and circuits in the brain. You do not need to have any prior background in neuroscience to take this course.
This course provides a review of linear algebra, including applications to networks, structures, and estimation, Lagrange multipliers. Also covered are: differential equations of equilibrium; Laplace's equation and potential flow; boundary-value problems; minimum principles and calculus of variations; Fourier series; discrete Fourier transform; convolution; and applications.
Note: This course was previously called "Mathematical Methods for Engineers I."
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.