Courses tagged with "Infor" (2510)
The course presents a systematic approach to design and assembly of mechanical assemblies, which should be of interest to engineering professionals, as well as post-baccalaureate students of mechanical, manufacturing and industrial engineering. It introduces mechanical and economic models of assemblies and assembly automation at two levels. "Assembly in the small" includes basic engineering models of part mating, and an explanation of the Remote Center Compliance. "Assembly in the large" takes a system view of assembly, including the notion of product architecture, feature-based design, and computer models of assemblies, analysis of mechanical constraint, assembly sequence analysis, tolerances, system-level design for assembly and JIT methods, and economics of assembly automation. Class exercises and homework include analyses of real assemblies, the mechanics of part mating, and a semester long project. Case studies and current research are included.
Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, and fracture of materials including crystalline and amorphous metals, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. Integrated laboratories provide the opportunity to explore these concepts through hands-on experiments including instrumentation of pressure vessels, visualization of atomistic deformation in bubble rafts, nanoindentation, and uniaxial mechanical testing, as well as writing assignments to communicate these findings to either general scientific or nontechnical audiences.
Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications.
This course is aimed at presenting the concepts underlying the response of polymeric materials to applied loads. These will include both the molecular mechanisms involved and the mathematical description of the relevant continuum mechanics. It is dominantly an "engineering" subject, but with an atomistic flavor. It covers the influence of processing and structure on mechanical properties of synthetic and natural polymers: Hookean and entropic elastic deformation, linear viscoelasticity, composite materials and laminates, yield and fracture.
This course introduces the fundamentals of machine tool and computer tool use. Students work with a variety of machine tools including the bandsaw, milling machine, and lathe. Instruction given on MATLAB®, MAPLE®, XESS™, and CAD. Emphasis is on problem solving, not programming or algorithmic development. Assignments are project-oriented relating to mechanical engineering topics. It is recommended that students take this subject in the first IAP after declaring the major in Mechanical Engineering.
This course was co-created by Prof. Douglas Hart and Dr. Kevin Otto.
12.524 is a survey of the mechanical behavior of rocks in natural geologic situations. Topics will include a brief survey of field evidence of rock deformation, physics of plastic deformation in minerals, brittle fracture and sliding, and pressure-solution processes. We will compare results of field petrologic and structural studies to data from experimental structural geology.
This course provides an introduction to the mechanics of solids with applications to science and engineering. We emphasize the three essential features of all mechanics analyses, namely: (a) the geometry of the motion and/or deformation of the structure, and conditions of geometric fit, (b) the forces on and within structures and assemblages; and (c) the physical aspects of the structural system (including material properties) which quantify relations between the forces and motions/deformation.
The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments.
Professor Oral Buyukozturk thanks Tzu-Yang Yu, a graduate student at MIT, for his valuable assistance in preparing course documents.
The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments.
Professor Oral Buyukozturk thanks Tzu-Yang Yu, a graduate student at MIT, for his valuable assistance in preparing course documents.
This course provides Mechanical Engineering students with an awareness of various responses exhibited by solid engineering materials when subjected to mechanical and thermal loadings; an introduction to the physical mechanisms associated with design-limiting behavior of engineering materials, especially stiffness, strength, toughness, and durability; an understanding of basic mechanical properties of engineering materials, testing procedures used to quantify these properties, and ways in which these properties characterize material response; quantitative skills to deal with materials-limiting problems in engineering design; and a basis for materials selection in mechanical design.
This course is an advanced subject in fluid and continuum mechanics. The course content includes kinematics, macroscopic balances for linear and angular momentum, stress tensors, creeping flows and the lubrication approximation, the boundary layer approximation, linear stability theory, and some simple turbulent flows.
1.033 provides an introduction to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modeling and design of a large range of engineering materials. This course is offered both to undergraduate (1.033) and graduate (1.57) students.
1.033 provides an introduction to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modeling and design of a large range of engineering materials. This course is offered both to undergraduate (1.033) and graduate (1.57) students.
Overview of mechanical properties of ceramics, metals, and polymers, emphasizing the role of processing and microstructure in controlling these properties. Basic topics in mechanics of materials including: continuum stress and strain, truss forces, torsion of a circular shaft and beam bending. Design of engineering structures from a materials point of view.
This course addresses the scientific basis for the development of new drugs. The first half of the semester begins with an overview of the drug discovery process, followed by fundamental principles of pharmacokinetics, pharmacodynamics, metabolism, and the mechanisms by which drugs cause therapeutic and toxic responses. The second half of the semester applies those principles to case studies and literature discussions of current problems with specific drugs, drug classes, and therapeutic targets.
This course is an introduction to designing mechatronic systems, which require integration of the mechanical and electrical engineering disciplines within a unified framework. There are significant laboratory-based design experiences. Topics covered in the course include: Low-level interfacing of software with hardware; use of high-level graphical programming tools to implement real-time computation tasks; digital logic; analog interfacing and power amplifiers; measurement and sensing; electromagnetic and optical transducers; control of mechatronic systems.
In this course students create digital visual images and analyze designs from historical and theoretical perspectives with an emphasis on art and design, examining visual experience in broad terms, and from the perspectives of both creators and viewers. The course addresses key topics such as: image making as a cognitive and perceptual practice, the production of visual significance and meaning, and the role of technology in creating and understanding digitally produced images. Students will be given design problems growing out of their reading and present solutions using technologies such as the Adobe Creative Suite and/or similar applications.
This course explores the ways in which humans experience the realm of sound and how perceptions and technologies of sound emerge from cultural, economic, and historical worlds. It examines how environmental, linguistic, and musical sounds are construed cross-culturally. It describes the rise of telephony, architectural acoustics, sound recording, and the globalized travel of these technologies. Students address questions of ownership, property, authorship, and copyright in the age of digital file sharing. There is a particular focus on how the sound/noise boundary is imagined, created and modeled across diverse sociocultural and scientific contexts. Auditory examples will be provided. Instruction and practice in written and oral communication provided. At MIT, this course is limited to 20 students.
This instance of "Media, Education, and the Marketplace" focuses on the rise of information and communications technologies (ICTs) during the age of globalization, specifically examining its effect and potential in developing nations across the world. In particular, the class will focus on the following three components:
- "Media" – ICTs, specifically the dramatic rise in use of the Internet over the past twenty years, have "globalized" the world and created opportunities where very few have been available in the past. We are entering a phase where an individual can significantly improve his or her own economical, political, and social circumstances with just a computer and Internet connection. This course investigate these profound developments through current research and case studies.
- "Education" – With projects such as MIT's OpenCourseWare, the major players in the world are beginning to understand the true power of ICTs in development. Throughout this class, we examine projects that harness the benefits of ICTs to create positive social change around the world.
- "Marketplace" – The focus is on the developing regions of the world. Specifically, the term "digital divide" is tossed around in everyday language, but what does it really mean? Is there an international digital divide, a national digital divide, or both? Should we try to bridge this divide, and how have past attempts succeeded and (for the most part) failed? Why? These are all questions that are asked throughout this course.
This course has a very unique pedagogy, which is discussed in more detail in the syllabus section.
This instance of "Media, Education, and the Marketplace" focuses on the rise of information and communications technologies (ICTs) during the age of globalization, specifically examining its effect and potential in developing nations across the world. In particular, the class will focus on the following three components:
- "Media" – ICTs, specifically the dramatic rise in use of the Internet over the past twenty years, have "globalized" the world and created opportunities where very few have been available in the past. We are entering a phase where an individual can significantly improve his or her own economical, political, and social circumstances with just a computer and Internet connection. This course investigate these profound developments through current research and case studies.
- "Education" – With projects such as MIT's OpenCourseWare, the major players in the world are beginning to understand the true power of ICTs in development. Throughout this class, we examine projects that harness the benefits of ICTs to create positive social change around the world.
- "Marketplace" – The focus is on the developing regions of the world. Specifically, the term "digital divide" is tossed around in everyday language, but what does it really mean? Is there an international digital divide, a national digital divide, or both? Should we try to bridge this divide, and how have past attempts succeeded and (for the most part) failed? Why? These are all questions that are asked throughout this course.
This course has a very unique pedagogy, which is discussed in more detail in the syllabus section.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.