Courses tagged with "Information Theory" (2513)
Physics I is a first-year physics course which introduces students to classical mechanics. This course has a hands-on focus, and approaches mechanics through take-home experiments. Topics include: kinematics, Newton's laws of motion, universal gravitation, statics, conservation laws, energy, work, momentum, and special relativity.
This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied.
Acknowledgements
Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli.
This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied.
Acknowledgements
Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli.
This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials.
This class was taught by an undergraduate in the Experimental Study Group (ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts.
This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism, including electric fields, magnetic fields, electromagnetic forces, conductors and dielectrics, electromagnetic waves, and the nature of light.
Course Format
This course has been designed for independent study. It includes all of the materials you will need to understand the concepts covered in this subject. The materials in this course include:
- A complete set of Lecture Videos by renowned MIT Physics Professor Walter Lewin
- A complete set of detailed Course Notes, replacing the need for a traditional course textbook
- A complete set of Class Slides, with overviews and illustrations of the concepts and applications of the subject
- Homework Problems and Concept Questions to gauge your understanding of and progress through the materials
- Homework Help Videos in which Prof. Lewin takes viewers step-by-step through solving homework problems
- Visualizations of electromagnetic phenomena which are normally invisible to the human eye
- An online study group at OpenStudy where you can connect with other independent learners
The content has been organized for linear progression through each of the Course Modules, starting with Electric Fields and concluding with The Nature of Light. It is a self-study course that you can work through at your own pace.
About OCW Scholar
OCW Scholar courses are designed specifically for OCW's single largest audience: independent learners. These courses are substantially more complete than typical OCW courses, and include new custom-created content as well as materials repurposed from previously published courses. Learn more about OCW Scholar.
This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena.
Staff List
Visualizations:
Prof. John Belcher
Instructors:
Dr. Peter Dourmashkin
Prof. Bruce Knuteson
Prof. Gunther Roland
Prof. Bolek Wyslouch
Dr. Brian Wecht
Prof. Eric Katsavounidis
Prof. Robert Simcoe
Prof. Joseph Formaggio
Course Co-Administrators:
Dr. Peter Dourmashkin
Prof. Robert Redwine
Technical Instructors:
Andy Neely
Matthew Strafuss
Course Material:
Dr. Peter Dourmashkin
Prof. Eric Hudson
Dr. Sen-Ben Liao
Acknowledgements
The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, and the Helena Foundation. Many people have contributed to the development of the course materials. (PDF)
This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials.
This class was taught by an undergraduate in the Experimental Study Group (ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts.
This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials.
This class was taught by an undergraduate in the Experimental Study Group (ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts.
Mechanical vibrations and waves, simple harmonic motion, superposition, forced vibrations and resonance, coupled oscillations and normal modes, vibrations of continuous systems, reflection and refraction, phase and group velocity. Optics, wave solutions to Maxwell's equations, polarization, Snell's law, interference, Huygens's principle, Fraunhofer diffraction, and gratings.
This is the third course in the core physics curriculum at MIT, following 8.01 Physics I: Classical Mechanics and 8.02 Physics II: Electricity and Magnetism. Topics include mechanical vibrations and waves, electromagnetic waves, and optics. Students will learn about musical instruments, red sunsets, glories, coronae, rainbows, haloes, X-ray binaries, neutron stars, black holes and Big Bang cosmology.
Course Components
- Lecture Videos by MIT Physics Professor Walter Lewin
- Viewing Notes aligned with the lecture videos
- Concept Questions to gauge your understanding
- Problem Sets and Exams with Solutions
- Problem Solving Help Videos by MIT Physics Professor Wit Busza
This course is offered to graduates and focuses on understanding the fundamental principles of the "front-end" processes used in the fabrication of devices for silicon integrated circuits. This includes advanced physical models and practical aspects of major processes, such as oxidation, diffusion, ion implantation, and epitaxy. Other topics covered include: high performance MOS and bipolar devices including ultra-thin gate oxides, implant-damage enhanced diffusion, advanced metrology, and new materials such as Silicon Germanium (SiGe).
SP.255 is a lecture, discussion, and project based seminar about the physics of rock climbing. Participants are first exposed to the unsolved problems in the climbing community that could be answered by research and then asked to solve a small part of one of these problems. The seminar provides an introduction to engineering problems, an opportunity to practice communication skills, and a brief stab at doing some research. This seminar explicitly does not include climbing instruction nor is climbing/mountaineering experience a prerequisite.
SP.255 is a lecture, discussion, and project based seminar about the physics of rock climbing. Participants are first exposed to the unsolved problems in the climbing community that could be answered by research and then asked to solve a small part of one of these problems. The seminar provides an introduction to engineering problems, an opportunity to practice communication skills, and a brief stab at doing some research. This seminar explicitly does not include climbing instruction nor is climbing/mountaineering experience a prerequisite.
SP.255 is a lecture, discussion, and project based seminar about the physics of rock climbing. Participants are first exposed to the unsolved problems in the climbing community that could be answered by research and then asked to solve a small part of one of these problems. The seminar provides an introduction to engineering problems, an opportunity to practice communication skills, and a brief stab at doing some research. This seminar explicitly does not include climbing instruction nor is climbing/mountaineering experience a prerequisite.
This course offers an introduction to the basic concepts of the quantum theory of solids.
Topics for this course are based primarily on reading and discussions of original research literature that cover the analysis as well as the underlying physical and physiological mechanisms of acoustic signals in the auditory periphery. Topics include the acoustics, mechanics, and hydrodynamics of sound transmission; the biophysical basis for cochlear amplification; the physiology of hair-cell transduction and synaptic transmission; efferent feedback control; the analysis and coding of simple and complex sounds by the inner ear; and the physiological bases for hearing disorders.
This three-week module, centered on a focal case, represents the second part of the Department's introduction to the challenges of reflection and action in professional planning practice. As such, it builds on the concepts and tools in 11.201 and 11.202 in the fall semester. Working in teams, students will deliver a 20-minute oral briefing, with an additional 10 minutes for questions and comments, in the last week of the class (as detailed on the assignment and posted course schedule). The teams will brief invited guests ("briefees") taking the roles of decision makers. DUSP faculty and fellow students may also be in attendance.
Planning Economics will apply microeconomic theory to issues that markets don't always handle well and so are not usually covered in a standard microeconomics course. Issues for this year include global warming, how you value a national park, the economics and politics of New York City development, how cities form and why people are willing to pay more to live in, say, the Boston Metro area, than they would pay to live in rural North Dakota, and how to evaluate costs and benefits that occur at different points in time.
This course explores policy and planning for sustainable development. It critically examines concept of sustainability as a process of social, organizational, and political development drawing on cases from the U.S. and Europe. It also explores pathways to sustainability through debates on ecological modernization; sustainable technology development, international and intergenerational fairness, and democratic governance.
During the last fifteen years, nations across the globe embarked on a historic transformation away from centrally planned economies to market-oriented ones. However, in the common pursuit for economic growth, these transition countries implemented widely different reform strategies with mixed results. With over a decade of empirical evidence now available, this new course examines this phenomenon that has pushed the discourse in a number of disciplines, requiring us to reconsider fundamental issues such as:
- the proper relationship between business, government, and the public interest
- the possible synergies and tensions between economic growth and equity
- how economic transition has reshaped cities
The premise of the course is that the core issue in transition involves institution-building and re-building in different contexts.
