Courses tagged with "Information control" (1404)
This class is jointly sponsored by the MIT Museum, Massachusetts Bay Maritime Artisans, the Department of Mechanical Engineering's Center for Ocean Engineering, and the Department of Architecture. The course teaches the fundamental steps in traditional boat design and demonstrates connections between craft and modern methods. Instructors provide vessel design orientation and then students carve their own shape ideas in the form of a wooden half-hull model. Experts teach the traditional skills of visualizing and carving your model in this phase of the class. After the models are completed, a practicing naval architect guides students in translating shape from models into a lines plan. The final phase of the class is a comparative analysis of the designs generated by the group.
This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.
This course will explore the rich diversity of women's voices and experiences as reflected in writings and films by and about Latina writers, filmmakers, and artists. Through close readings, class discussions and independently researched student presentations related to each text, we will explore not only the unique, individual voice of the writer, but also the cultural, social and political contexts which inform their narratives. We will also examine the roles that gender, familial ties and social and political preoccupations play in shaping the values of the writers and the nature of the characters encountered in the texts and films.
This course emphasizes statistics as a powerful tool for studying complex issues in behavioral and biological sciences, and explores the limitations of statistics as a method of inquiry. The course covers descriptive statistics, probability and random variables, inferential statistics, and basic issues in experimental design. Techniques introduced include confidence intervals, t-tests, F-tests, regression, and analysis of variance. Assignments include a project in data analysis.
This course offers an introduction to probability, statistical mechanics, and thermodynamics. Numerous examples are used to illustrate a wide variety of physical phenomena such as magnetism, polyatomic gases, thermal radiation, electrons in solids, and noise in electronic devices.
This course is an elective subject in MIT’s undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.
This course covers probability distributions for classical and quantum systems. Topics include: Microcanonical, canonical, and grand canonical partition-functions and associated thermodynamic potentials. Also discussed are conditions of thermodynamic equilibrium for homogenous and heterogenous systems.
The course follows 8.044, Statistical Physics I, and is second in this series of undergraduate Statistical Physics courses.
This course provides an introduction to the physical chemistry of biological systems. Topics include: connection of macroscopic thermodynamic properties to microscopic molecular properties using statistical mechanics, chemical potentials, equilibrium states, binding cooperativity, behavior of macromolecules in solution and at interfaces, and solvation. Example problems include protein structure, genomic analysis, single molecule biomechanics, and biomaterials.
This course is an introduction to statistical data analysis. Topics are chosen from applied probability, sampling, estimation, hypothesis testing, linear regression, analysis of variance, categorical data analysis, and nonparametric statistics.
This course is a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. Topics include: hypothesis testing and estimation, confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, correlation, decision theory, and Bayesian statistics.
This course offers an in-depth the theoretical foundations for statistical methods that are useful in many applications. The goal is to understand the role of mathematics in the research and development of efficient statistical methods.
Have you ever considered going to a pharmacy to order some new cardiomyocytes (heart muscle cells) for your ailing heart? It might sound crazy, but recent developments in stem cell science have made this concept not so futuristic. In this course, we will explore the underlying biology behind the idea of using stem cells to treat disease, specifically analyzing the mechanisms that enable a single genome to encode multiple cell states ranging from neurons to fibroblasts to T cells. Overall, we hope to provide a comprehensive overview of this exciting new field of research and its clinical relevance.
This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
The transition from high school and home to college and a new living environment can be a fascinating and interesting time, made all the more challenging and interesting by being at MIT. More than recording the first semester through a series of snapshots, this freshman seminar will attempt to teach photography as a method of seeing and a tool for better understanding new surroundings. Over the course of the semester, students will develop a body of work through a series of assignments, and then attempt to describe the conditions and emotions of their new environment in a cohesive final presentation.
This is an advanced course in game theory. We begin with a rigorous overview of the main equilibrium concepts for non-cooperative games in both static and dynamic settings with either complete or incomplete information. We define and explore properties of iterated strict dominance, rationalizability, Nash equilibrium, subgame perfection, sequential, perfect and proper equilibria, the intuitive criterion, and iterated weak dominance. We discuss applications to auctions, bargaining, and repeated games. Then we introduce solution concepts for cooperative games and study non-cooperative implementations. Other topics include matching theory and networks.
This course provides an overview of the musical styles and techniques developed over the past 115 years. The anthology and supplemental listening will present a range of art music aesthetics in a variety of genres such as chamber music, symphonic and choral music, and opera. While tuning your ears to novel sounds, you will hone your own preferences and aim to understand the motivations behind and importance of a wide diversity of compositional orientations, including Expressionism, Impressionism, atonality, neo-Classicism, serialism, nationalism, the influence of jazz and popular idioms, post-tonality, electronic music, aleatory, performance art, post-modernism, minimalism, spectralism, the New Complexity, neo-Romanticism, and post-minimalism.
This course teaches the art of guessing results and solving problems without doing a proof or an exact calculation. Techniques include extreme-cases reasoning, dimensional analysis, successive approximation, discretization, generalization, and pictorial analysis. Applications include mental calculation, solid geometry, musical intervals, logarithms, integration, infinite series, solitaire, and differential equations. (No epsilons or deltas are harmed by taking this course.) This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.
This course introduces string theory to undergraduate and is based upon Prof. Zwiebach's textbook entitled A First Course in String Theory. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity and basic quantum mechanics. This course develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism and statistical mechanics.
This is a laboratory experience course with a focus on photography, electronic imaging, and light measurement, much of it at short duration. In addition to teaching these techniques, the course provides students with experience working in a laboratory and teaches good work habits and techniques for approaching laboratory work. A major purpose of 6.163 is to provide students with many opportunities to sharpen their communication skills: oral, written, and visual.
This course aims at providing students with a solid background on the principles of structural engineering design. Students will be exposed to the theories and concepts of both concrete and steel design and analysis both at the element and system levels. Hands-on design experience and skills will be gained and learned through problem sets and a comprehensive design project. An understanding of real-world open-ended design issues will be developed. Besides regular lectures, weekly recitations and project discussion sessions will be held.
Structural geology is the study of processes and products of rock deformation. This course introduces the techniques of structural geology through a survey of the mechanics of rock deformation, a survey of the features and geometries of faults and folds, and techniques of strain analysis. Regional structural geology and tectonics are introduced. Class lectures are supplemented by lab exercises and demonstrations as well as field trips to local outcrops.
Applies solid mechanics to analysis of high-technology structures. Structural design considerations. Review of three-dimensional elasticity theory; stress, strain, anisotropic materials, and heating effects. Two-dimensional plane stress and plane strain problems. Torsion theory for arbitrary sections. Bending of unsymmetrical section and mixed material beams. Bending, shear, and torsion of thin-wall shell beams. Buckling of columns and stability phenomena. Introduction to structural dynamics. Exercises in the design of general and aerospace structures.
This course introduces students to the principles of computation. Upon completion of 6.001, students should be able to explain and apply the basic methods from programming languages to analyze computational systems, and to generate computational solutions to abstract problems. Substantial weekly programming assignments are an integral part of the course. This course is worth 4 Engineering Design Points.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.