Courses tagged with "Information control" (1404)
This course deals with a more advanced treatment of the biochemical mechanisms that underlie biological processes. Emphasis will be given to the experimental methods used to unravel how these processes fit into the cellular context as well as the coordinated regulation of these processes. Topics include macromolecular machines for energy and force transduction, regulation of biosynthetic and degradative pathways, and the structure and function of nucleic acids.
This course illustrates how knowledge and principles of biology, biochemistry, and engineering are integrated to create new products for societal benefit. It uses a case study format to examine recently developed products of pharmaceutical and biotechnology industries: how a product evolves from initial idea, through patents, testing, evaluation, production, and marketing. Emphasizes scientific and engineering principles; the responsibility scientists, engineers, and business executives have for the consequences of their technology; and instruction and practice in written and oral communication.
The topic focus of this class will vary from year to year. This version looks at inflammation underlying many diseases, specifically its role in cancer, diabetes, and cardiovascular disease.
This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data. Enrollment preference is given to juniors and seniors.
This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data. Enrollment preference is given to juniors and seniors.
In this course problems from biological engineering are used to develop structured computer programming skills and explore the theory and practice of complex systems design and construction.
The official course Web site can be viewed at: BE.180 Biological Engineering Programming.
Biomimetics is based on the belief that nature, at least at times, is a good engineer. Biomimesis is the scientific method of learning new principles and processes based on systematic study, observation and experimentation with live animals and organisms. This Freshman Advising Seminar on the topic is a way for freshmen to explore some of MIT's richness and learn more about what they may want to study in later years.
This course focuses on feedback control mechanisms that living organisms implement at the molecular level to execute their functions, with emphasis on techniques to design novel systems with prescribed behaviors. Students will learn how biological functions can be understood and designed using notions from feedback control.
This class is an interdisciplinary survey that explores the experiences of people of African descent through the overlapping approaches of history, literature, anthropology, legal studies, media studies, performance, linguistics, and creative writing. It connects the experiences of African Americans and of other American minorities, focusing on social, political, and cultural histories, and on linguistic patterns. Activities include lectures, discussions, workshops, and required field trips that involve minimal cost to students.
Consists of a series of hands-on laboratories designed to give students experience with common techniques for conducting neuroscience research. Included are sessions on anatomical, ablation, neurophysiological, and computer modeling techniques, and ways these techniques are used to study brain function. Each session consists of a brief quiz on assigned readings that provide background to the lab, a lecture that expands on the readings, and that week's laboratory. Lab reports required. Students receive training in the art of scientific writing and oral presentation with feedback designed to improve writing and speaking skills. Assignments include two smaller lab reports, one major lab report with revision, and an oral report.
This course provides an outline of vertebrate functional neuroanatomy, aided by studies of comparative neuroanatomy and evolution, and by studies of brain development. Topics include early steps to a central nervous system, basic patterns of brain and spinal cord connections, regional development and differentiation, regeneration, motor and sensory pathways and structures, systems underlying motivations, innate action patterns, formation of habits, and various cognitive functions. In addition, lab techniques are reviewed and students perform brain dissections.
This class offers a foundation in the visual art practice and its critical analysis for beginning architecture students. Emphasis is on long-range artistic development and its analogies to architectural thinking and practice. Students will learn to communicate ideas and experiences through various two-dimensional, and three-dimensional, and time-based media, including installations, performance and video. Lectures, visiting artist presentations, field trips, and readings supplement studio practice.
This course will serve as a two-week aggressively gentle introduction to programming for those students who lack background in the field. Specifically targeted at students with little or no programming experience, the course seeks to reach students who intend to take 6.001 and feel they would struggle because they lack the necessary background. The main focus of the subject will be acquiring programming experience: instruction in programming fundamentals coupled with lots of practice problems. Lots of programming required, but lots of support provided.
In this class, concepts of building technology and experimental methods are studied, in class and in lab assignments. Projects vary yearly and have included design and testing of strategies for daylighting, passive heating and cooling, and improved indoor air quality via natural ventilation. Experimental methods focus on measurement and analysis of thermally driven and wind-driven airflows, lighting intensity and glare, and heat flow and thermal storage. Experiments are conducted at model and full scale and are often motivated by ongoing field work in developing countries.
This is a variation on 18.02 Multivariable Calculus. It covers the same topics as in 18.02, but with more focus on mathematical concepts.
Acknowledgement
Prof. McKernan would like to acknowledge the contributions of Lars Hesselholt to the development of this course.
This is an undergraduate course on differential calculus in one and several dimensions. It is intended as a one and a half term course in calculus for students who have studied calculus in high school. The format allows it to be entirely self contained, so that it is possible to follow it without any background in calculus.
18.014, Calculus with Theory, covers the same material as 18.01 (Single Variable Calculus), but at a deeper and more rigorous level. It emphasizes careful reasoning and understanding of proofs. The course assumes knowledge of elementary calculus.
This course addresses the evolution of the modern capitalist economy and evaluates its current structure and performance. Various paradigms of economics are contrasted and compared (neoclassical, Marxist, socioeconomic, and neocorporate) in order to understand how modern capitalism has been shaped and how it functions in today's economy. The course stresses general analytic reasoning and problem formulation rather than specific analytic techniques. Readings include classics in economic thought as well as contemporary analyses.
The decades leading up to the Atlantic revolutions of the late eighteenth century were formative moments in the rise of capitalism. The novel instruments of credit, debt, and investment fashioned during this period proved to be enduring sources of financial innovation, but they also generated a great deal of political conflict, particularly during the revolutionary era itself. This seminar examines the debates surrounding large-scale financial and trading corporations and considers the eighteenth century as a period of recurring financial crisis in which corporate power came into sustained and direct contact with emerging republican norms. The seminar ends with a look at the relationship between slavery and the rise of “modern” or “industrial” capitalism in the nineteenth century, as well as some of the critiques of capitalism that emerged out of that experience.
This course has been designed as a seminar to give students an understanding of how scientists with medical or scientific degrees conduct research in both hospital and academic settings. There will be interactive discussions with research clinicians and scientists about the career opportunities and research challenges in the biomedical field, which an MIT student might prepare for by obtaining an MD, PhD, or combined degrees. The seminar will be held in a case presentation format, with topics chosen from the radiological sciences, including current research in magnetic resonance imaging, positron emission tomography and other nuclear imaging techniques, and advances in radiation therapy. With the lectures as background, we will also examine alternative and related options such as biomedical engineering, medical physics, and medical engineering. We'll use as examples and points of comparisons the curriculum paths available through MIT's Department of Nuclear Science and Engineering. In past years we have given very modest assignments such as readings in advance of or after a seminar, and a short term project.
TV programs such as "Law and Order" show how forensic experts are called upon to give testimony that often determines the outcome of court cases. Engineers are one class of expert who can help display evidence in a new light to solve cases. In this seminar you will be part of the problem-solving process, working through both previously solved and unsolved cases. Each week we will investigate cases, from the facts that make up each side to the potential evidence we can use as engineers to expose culprits. The cases range from disintegrating airplane engines to gas main explosions to Mafia murders. This seminar will be full of discussions about the cases and creative approaches to reaching the solutions. The approach is hands-on so you will have a chance to participate in the process, not simply study it. Some background reading and oral presentation are required.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.