Courses tagged with "Information control" (1404)
This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included.
This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included.
This course presents an introduction to quantum mechanics. It begins with an examination of the historical development of quantum theory, properties of particles and waves, wave mechanics and applications to simple systems—the particle in a box, the harmonic oscillator, the rigid rotor and the hydrogen atom. The lectures continue with a discussion of atomic structure and the Periodic Table. The final lectures cover applications to chemical bonding including valence bond and molecular orbital theory, molecular structure, and spectroscopy.
Acknowledgements
The material for 5.61 has evolved over a period of many years, and, accordingly, several faculty members have contributed to the development of the course contents. The original version of the lecture notes that are available on OCW was prepared in the early 1990's by Prof. Sylvia T. Ceyer. These were revised and transcribed to electronic form primarily by Prof. Keith A. Nelson. The current version includes additional contributions by Professors Moungi G. Bawendi, Robert G. Griffin, Robert J. Silbey, and John S. Waugh, all of whom have taught the course in the recent past.
This course covers elementary statistical mechanics, transport properties, kinetic theory, solid state, reaction rate theory, and chemical reaction dynamics.
Acknowledgements
The staff for this course would like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Chemistry Department affiliated with course #5.62. Since the following works have evolved over a period of many years, no single source can be attributed.
For all of the bodies attached to the many great minds that walk the Institute's halls, in the work that goes on at MIT the body is present as an object of study, but is all but unrecognized as an important dimension of our intelligence and experience. Yet the body is the basis of our experience in the world; it is the very foundation on which cognitive intelligence is built. Using the MIT gymnastics gym as our laboratory, the Physical Intelligence activity will take an innovative, hands-on approach to explore the kinesthetic intelligence of the body as applicable to a wide range of disciplines. Via exercises, activities, readings and discussions designed to excavate our physical experience, we will not only develop balance, agility, flexibility and strength, but a deep appreciation for the inherent unity of mind and body that suggests physical intelligence as a powerful complement to cognitive intelligence.
The central point of this course is to provide a physical basis that links the structure of materials with their properties, focusing primarily on metals. With this understanding in hand, the concepts of alloy design and microstructural engineering are also discussed, linking processing and thermodynamics to the structure and properties of metals.
This course introduces the structure, composition, and physical processes governing the terrestrial planets, including their formation and basic orbital properties. Topics include plate tectonics, earthquakes, seismic waves, rheology, impact cratering, gravity and magnetic fields, heat flux, thermal structure, mantle convection, deep interiors, planetary magnetism, and core dynamics. Suitable for majors and non-majors seeking general background in geophysics and planetary structure.
This freshman-level course is an introduction to classical mechanics. The subject is taught using the TEAL (Technology Enabled Active Learning) format which features small group interaction via table-top experiments utilizing laptops for data acquisition and problem solving workshops.
Acknowledgements
The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, and the Helena Foundation.
This class is an introduction to classical mechanics for students who are comfortable with calculus. The main topics are: Vectors, Kinematics, Forces, Motion, Momentum, Energy, Angular Motion, Angular Momentum, Gravity, Planetary Motion, Moving Frames, and the Motion of Rigid Bodies.
Physics I is a first-year, first-semester course that provides an introduction to Classical Mechanics. It covers the basic concepts of Newtonian mechanics, fluid mechanics, and kinetic gas theory.
Course Format
This course has been designed for independent study. It includes all of the materials you will need to understand the concepts covered in this subject. The materials in this course include:
- A complete set of Lecture Videos by renowned MIT Physics Professor Walter Lewin
- A complete set of detailed Course Notes, replacing the need for a traditional course textbook
- A complete set of Class Slides, with overviews and illustrations of the concepts and applications of the subject
- Homework Problems and interactive Concept Tests to gauge your understanding of and progress through the materials
- Homework Help Videos in which Prof. Lewin takes viewers step-by-step through solving homework problems
- Selected links to websites with related materials, including videos, simulations, and animations
- An Online Study Group at OpenStudy where you can connect with other independent learners.
The content has been organized for linear progression through each of the Course Modules, starting with Introduction to Mechanics and concluding with Central Force Motion. It is a self-study course that you can work through at your own pace.
Content Development
Dr. Peter Dourmashkin
Prof. Walter Lewin
Prof. Thomas Greytak
Craig Watkins
Physics I is a first-year physics course which introduces students to classical mechanics. This course has a hands-on focus, and approaches mechanics through take-home experiments. Topics include: kinematics, Newton's laws of motion, universal gravitation, statics, conservation laws, energy, work, momentum, and special relativity.
Physics I is a first-year physics course which introduces students to classical mechanics. This course has a hands-on focus, and approaches mechanics through take-home experiments. Topics include: kinematics, Newton's laws of motion, universal gravitation, statics, conservation laws, energy, work, momentum, and special relativity.
This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied.
Acknowledgements
Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli.
This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied.
Acknowledgements
Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli.
This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials.
This class was taught by an undergraduate in the Experimental Study Group (ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts.
This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism, including electric fields, magnetic fields, electromagnetic forces, conductors and dielectrics, electromagnetic waves, and the nature of light.
Course Format
This course has been designed for independent study. It includes all of the materials you will need to understand the concepts covered in this subject. The materials in this course include:
- A complete set of Lecture Videos by renowned MIT Physics Professor Walter Lewin
- A complete set of detailed Course Notes, replacing the need for a traditional course textbook
- A complete set of Class Slides, with overviews and illustrations of the concepts and applications of the subject
- Homework Problems and Concept Questions to gauge your understanding of and progress through the materials
- Homework Help Videos in which Prof. Lewin takes viewers step-by-step through solving homework problems
- Visualizations of electromagnetic phenomena which are normally invisible to the human eye
- An online study group at OpenStudy where you can connect with other independent learners
The content has been organized for linear progression through each of the Course Modules, starting with Electric Fields and concluding with The Nature of Light. It is a self-study course that you can work through at your own pace.
About OCW Scholar
OCW Scholar courses are designed specifically for OCW's single largest audience: independent learners. These courses are substantially more complete than typical OCW courses, and include new custom-created content as well as materials repurposed from previously published courses. Learn more about OCW Scholar.
This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena.
Staff List
Visualizations:
Prof. John Belcher
Instructors:
Dr. Peter Dourmashkin
Prof. Bruce Knuteson
Prof. Gunther Roland
Prof. Bolek Wyslouch
Dr. Brian Wecht
Prof. Eric Katsavounidis
Prof. Robert Simcoe
Prof. Joseph Formaggio
Course Co-Administrators:
Dr. Peter Dourmashkin
Prof. Robert Redwine
Technical Instructors:
Andy Neely
Matthew Strafuss
Course Material:
Dr. Peter Dourmashkin
Prof. Eric Hudson
Dr. Sen-Ben Liao
Acknowledgements
The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, and the Helena Foundation. Many people have contributed to the development of the course materials. (PDF)
This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials.
This class was taught by an undergraduate in the Experimental Study Group (ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts.
This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials.
This class was taught by an undergraduate in the Experimental Study Group (ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.