Online courses directory (273)
Things in our universe can be unimaginably large and small. In this topic, we'll try to imagine the unimaginable!. Scale of the Large. Scale of the Small. Introduction to Light. Four Fundamental Forces. Scale of Earth and Sun. Scale of Solar System. Scale of Distance to Closest Stars. Scale of the Galaxy. Intergalactic Scale. Hubble Image of Galaxies. Cosmological Time Scale 1. Cosmological Time Scale 2. Big Bang Introduction. Radius of Observable Universe. (Correction) Radius of Observable Universe. Red Shift. Cosmic Background Radiation. Cosmic Background Radiation 2. Hubble's Law. A Universe Smaller than the Observable. Scale of the Large. Scale of the Small. Introduction to Light. Four Fundamental Forces. Scale of Earth and Sun. Scale of Solar System. Scale of Distance to Closest Stars. Scale of the Galaxy. Intergalactic Scale. Hubble Image of Galaxies. Cosmological Time Scale 1. Cosmological Time Scale 2. Big Bang Introduction. Radius of Observable Universe. (Correction) Radius of Observable Universe. Red Shift. Cosmic Background Radiation. Cosmic Background Radiation 2. Hubble's Law. A Universe Smaller than the Observable.
Our universe is defined by stars. This topic explores how they came to be and where they end up. This includes a discussion of black holes and galaxies. Birth of Stars. Accreting mass due to gravity simulation. Challenge: Modeling Accretion Disks. Becoming a Red Giant. White and Black Dwarfs. Star Field and Nebula Images. Lifecycle of Massive Stars. Supernova (Supernovae). Supernova clarification. Black Holes. Supermassive Black Holes. Quasars. Quasar Correction. Galactic Collisions. Parallax in Observing Stars. Stellar Parallax. Stellar Distance Using Parallax. Stellar Parallax Clarification. Parsec Definition. Cepheid Variables 1. Why Cepheids Pulsate. Why Gravity Gets So Strong Near Dense Objects. Birth of Stars. Accreting mass due to gravity simulation. Challenge: Modeling Accretion Disks. Becoming a Red Giant. White and Black Dwarfs. Star Field and Nebula Images. Lifecycle of Massive Stars. Supernova (Supernovae). Supernova clarification. Black Holes. Supermassive Black Holes. Quasars. Quasar Correction. Galactic Collisions. Parallax in Observing Stars. Stellar Parallax. Stellar Distance Using Parallax. Stellar Parallax Clarification. Parsec Definition. Cepheid Variables 1. Why Cepheids Pulsate. Why Gravity Gets So Strong Near Dense Objects.
Classical gravity. How masses attract each other (according to Newton). Introduction to Gravity. Mass and Weight Clarification. Gravity for Astronauts in Orbit. Would a Brick or Feather Fall Faster. Acceleration Due to Gravity at the Space Station. Space Station Speed in Orbit. Introduction to Newton's Law of Gravitation. Gravitation (part 2). Introduction to Gravity. Mass and Weight Clarification. Gravity for Astronauts in Orbit. Would a Brick or Feather Fall Faster. Acceleration Due to Gravity at the Space Station. Space Station Speed in Orbit. Introduction to Newton's Law of Gravitation. Gravitation (part 2).
In this tutorial we begin to explore ideas of velocity and acceleration. We do exciting things like throw things off of cliffs (far safer on paper than in real life) and see how high a ball will fly in the air. Introduction to Vectors and Scalars. Calculating Average Velocity or Speed. Solving for Time. Displacement from Time and Velocity Example. Acceleration. Airbus A380 Take-off Time. Airbus A380 Take-off Distance. Why Distance is Area under Velocity-Time Line. Average Velocity for Constant Acceleration. Acceleration of Aircraft Carrier Takeoff. Deriving Displacement as a Function of Time, Acceleration and Initial Velocity. Plotting Projectile Displacement, Acceleration, and Velocity. Projectile Height Given Time. Deriving Max Projectile Displacement Given Time. Impact Velocity From Given Height. Viewing g as the value of Earth's Gravitational Field Near the Surface. Projectile motion (part 1). Projectile motion (part 2). Projectile motion (part 3). Projectile motion (part 4). Projectile motion (part 5). Introduction to Vectors and Scalars. Calculating Average Velocity or Speed. Solving for Time. Displacement from Time and Velocity Example. Acceleration. Airbus A380 Take-off Time. Airbus A380 Take-off Distance. Why Distance is Area under Velocity-Time Line. Average Velocity for Constant Acceleration. Acceleration of Aircraft Carrier Takeoff. Deriving Displacement as a Function of Time, Acceleration and Initial Velocity. Plotting Projectile Displacement, Acceleration, and Velocity. Projectile Height Given Time. Deriving Max Projectile Displacement Given Time. Impact Velocity From Given Height. Viewing g as the value of Earth's Gravitational Field Near the Surface. Projectile motion (part 1). Projectile motion (part 2). Projectile motion (part 3). Projectile motion (part 4). Projectile motion (part 5).
You understand velocity and acceleration well in one-dimension. Now we can explore scenarios that are even more fun. With a little bit of trigonometry (you might want to review your basic trig, especially what sin and cos are), we can think about whether a baseball can clear the "green monster" at Fenway Park. Visualizing Vectors in 2 Dimensions. Projectile at an Angle. Different Way to Determine Time in Air. Launching and Landing on Different Elevations. Total Displacement for Projectile. Total Final Velocity for Projectile. Correction to Total Final Velocity for Projectile. Projectile on an Incline. Unit Vectors and Engineering Notation. Clearing the Green Monster at Fenway. Green Monster at Fenway Part 2. Unit Vector Notation. Unit Vector Notation (part 2). Projectile Motion with Ordered Set Notation. Optimal angle for a projectile part 1. Optimal angle for a projectile part 2 - Hangtime. Optimal angle for a projectile part 3 - Horizontal distance as a function of angle (and speed). Optimal angle for a projectile part 4 Finding the optimal angle and distance with a bit of calculus. Race Cars with Constant Speed Around Curve. Centripetal Force and Acceleration Intuition. Visual Understanding of Centripetal Acceleration Formula. Calculus proof of centripetal acceleration formula. Loop De Loop Question. Loop De Loop Answer part 1. Loop De Loop Answer part 2. Visualizing Vectors in 2 Dimensions. Projectile at an Angle. Different Way to Determine Time in Air. Launching and Landing on Different Elevations. Total Displacement for Projectile. Total Final Velocity for Projectile. Correction to Total Final Velocity for Projectile. Projectile on an Incline. Unit Vectors and Engineering Notation. Clearing the Green Monster at Fenway. Green Monster at Fenway Part 2. Unit Vector Notation. Unit Vector Notation (part 2). Projectile Motion with Ordered Set Notation. Optimal angle for a projectile part 1. Optimal angle for a projectile part 2 - Hangtime. Optimal angle for a projectile part 3 - Horizontal distance as a function of angle (and speed). Optimal angle for a projectile part 4 Finding the optimal angle and distance with a bit of calculus. Race Cars with Constant Speed Around Curve. Centripetal Force and Acceleration Intuition. Visual Understanding of Centripetal Acceleration Formula. Calculus proof of centripetal acceleration formula. Loop De Loop Question. Loop De Loop Answer part 1. Loop De Loop Answer part 2.
Work and energy. Potential energy. Kinetic energy. Mechanical advantage. Springs and Hooke's law. Introduction to work and energy. Work and Energy (part 2). Conservation of Energy. Work/Energy problem with Friction. Introduction to mechanical advantage. Mechanical Advantage (part 2). Mechanical Advantage (part 3). Intro to springs and Hooke's Law. Potential energy stored in a spring. Spring potential energy example (mistake in math). Introduction to work and energy. Work and Energy (part 2). Conservation of Energy. Work/Energy problem with Friction. Introduction to mechanical advantage. Mechanical Advantage (part 2). Mechanical Advantage (part 3). Intro to springs and Hooke's Law. Potential energy stored in a spring. Spring potential energy example (mistake in math).
Here is your chance to change the course of history! In this eight-week experience, you will begin developing profitable social and technological innovations to tackle our pressing energy and climate obligations. Course content includes videos and short readings carefully selected and organized to be accessible to a wide audience regardless of nationality, educational background, professional interests, or academic focus. All of the assigned work in this course is designed to help you dream up and begin developing your own sustainable energy innovation. Your innovation may be a physical product, or a service. It may be a technical innovation, or a social one. It need not make you rich, but you will be challenged to at least make your project self-supporting. The course materials, my feedback, and, most importantly, interactions with your classmates, will all help as you try to make your ideas real. You can complete the coursework in two to four hours per week, and any additional time you spend will just improve the chances your project is successful. Students should have completed the Intro to Sustainable Energy course on Canvas Network, or something similar, prior to taking this course. The "Introduction" course is publicly viewable with a CC Attribution Non-Commercial Share Alike license.
In this six-week course, you will learn the basics about our energy and climate obligations. You will also prepare yourself to continue learning as these issues evolve. You will evaluate demand-side (e.g. more efficient buildings and automobiles) and supply-side (e.g. solar and wind) strategies for more sustainable use of energy. The course will require fact-based analysis of our energy obligations and possible ways to meet them. Please also consider enrolling in Sustainable Energy Innovation which begins June 2.
6.728 is offered under the department's "Devices, Circuits, and Systems" concentration. The course covers concepts in elementary quantum mechanics and statistical physics, introduces applied quantum physics, and emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.
This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity.
This Freshman Advising Seminar surveys the many applications of magnets and magnetism. To the Chinese and Greeks of ancient times, the attractive and repulsive forces between magnets must have seemed magical indeed. Through the ages, miraculous curative powers have been attributed to magnets, and magnets have been used by illusionists to produce "magical" effects. Magnets guided ships in the Age of Exploration and generated the electrical industry in the 19th century. Today they store information and entertainment on disks and tapes, and produce sound in speakers, images on TV screens, rotation in motors, and levitation in high-speed trains. Students visit various MIT projects related to magnets (including superconducting electromagnets) and read about and discuss the history, legends, pseudoscience, science, and technology of types of magnets, including applications in medicine. Several short written reports and at least one oral presentation will be required of each participant.
This course focuses on the practical applications of the continuum concept for deformation of solids and fluids, emphasizing force balance. Topics include stress tensor, infinitesimal and finite strain, and rotation tensors. Constitutive relations applicable to geological materials, including elastic, viscous, brittle, and plastic deformation are studied.
This is an introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Subjects covered include: radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. We examine the solution of inverse problems in remote sensing of atmospheric temperature and composition.
This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light–squeezed states; multi-photon processes, Raman scattering; coherence–level crossings, quantum beats, double resonance, superradiance; trapping and cooling-light forces, laser cooling, atom optics, spectroscopy of trapped atoms and ions; atomic interactions–classical collisions, quantum scattering theory, ultracold collisions; and experimental methods.
This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and transport properties; and coarse-graining approaches and mesoscale models. The course employs case studies from industrial applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of classical force fields, electronic-structure approaches, molecular dynamics, and Monte Carlo.
This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5107 (Atomistic Computer Modeling of Materials).
Acknowledgements
Support for this course has come from the National Science Foundation's Division of Materials Research (grant DMR-0304019) and from the Singapore-MIT Alliance.
This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.
The Big Bang theory has revolutionized our understanding of how the Universe was formed. It presents the scientific proof that shows how the Universe expanded from an infinitely small point around 13.7 billion years ago. In this free online course the learner will discover how scientists calculated when the Big Bang happened and how the Universe expanded after the Big Bang. The formation of the first atoms is discussed and how they are responsible for the cosmic background radiation that is found throughout the Universe. This free online course will be of great interest to students of astronomy and physics and to all learners who would like to learn more about the Big Bang theory and what it has to say about the formation of the Universe. <br />
The power of electrical energy has been harnessed by engineers over the past century to transform society and how we live our lives. The phenomenon of electrical energy has been known since the 16th century, but it was only in the 19th century that rapid progress was made in the areas of electrical technology and electrical engineering. <br /><br />ALISON's free online electrical technology course introduces the basic laws of electricity, sources of electricity and electricity safety procedures. It also reviews electrical technology such as resistors, inductors, capacitors and series, and parallel circuits. <br /><br />ALISON's free online electrical technology course will be of great interest to all learners who would like to learn the basics of electricity and how electrical technology works to bring all the benefits of modern living into our lives.<br />
Course Summary
In this first part of Vehicle Dynamics, we illuminate the longitudinal dynamic aspects of vehicles.
Clear and brief: acceleration and braking.
In Detail: After an introduction, we will look at driving resistances and slip, explain the demand of power and limits of a car, then clarify the needs for a clutch and gears and look at the rear and front weights during acceleration and braking. The course will be finished by two applications from automotive mechatronics.
What will I learn?
By the end of the course you will …
- understand basic principles of accelerating and braking a car.
- know the driving resistances and their influences on vehicle dynamics.
- understand the discrepancy between demands and limits of powertrain.
- understand the necessity of gears and clutch.
- understand the correlation between braking, wheel load and recovery of energy.
- be able to calculate simple properties of a car.
What do I have to know?
Some basic understanding of the following subjects will help you successfully participate in this course: Algebra; Trigonometric Functions; Differential Calculus; Linear Algebra; Vectors; Coordinate Systems; Force, Torque, Equilibrium; Mass, Center of Gravity, Moment of Inertia; Method of Sections, Friction, Newton's Law, (Lagrange's Equation)
Course structure
This course has a total of 12 chapters, and the topics for each chapter are the following:
Chapter 1: Preliminaries
Chapter 2: Introduction and Rolling Resistance
Chapter 3: Resistances: Grading, Acceleration, Aerodynamic Drag
Chapter 4: Real and ideal characteristic maps
Chapter 5: Approximation of the ideal map: Clutch and transmission
Chapter 6: Driving performance and axle loads
Chapter 7: ABS: Anti-lock Braking System
Chapter 8: ACC
Chapter 9: Homework Solutions Chapters 1 -3
Chapter 10: Homework Solutions Chapter 4 - 5
Chapter 11: Homework Solutions Chapter 6 - 8
Chapter 12: Solution of the exam
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.