Online courses directory (273)
This course introduces sensory systems and multi-sensory fusion using the vestibular and spatial orientation systems as a model. Topics range from end organ dynamics to neural responses, to sensory integration, to behavior, and adaptation, with particular application to balance, posture and locomotion under normal gravity and space conditions. Depending upon the background and interests of the students, advanced term project topics might include motion sickness, astronaut adaptation, artificial gravity, lunar surface locomotion, vestibulo-cardiovascular responses, vestibular neural prostheses, or other topics of interest.
The free online Diploma in General Science course from ALISON is ideal for anyone who wants to gain a comprehensive knowledge and understanding of key subjects in biology, chemistry and physics. In biology you will covers subjects such as cell theory, genetics and evolution; in chemistry you will cover subjects such as atoms, molecules and the periodic table; and in physics you will cover subjects such as magnetism, electricity and sound. This Diploma course will be of great interest to those who want to further improve their knowledge and understanding of general science, and will greatly enhance your career prospects.<br />
This course introduces analysis techniques for complex structures and the role of material properties in structural design, failure, and longevity. Students will learn about the energy principles in structural analysis and their applications to statically-indeterminate structures and solid continua. Additionally, the course will examine matrix and finite-element methods of structured analysis including bars, beams, and two-dimensional plane stress elements. Structural materials and their properties will be considered, as will metals and composites. Other topics include modes of structural failure, criteria for yielding and fracture, crack formation and fracture mechanics, and fatigue and design for longevity. Students are expected to apply these concepts to their own structural design projects.
This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity.
The theoretical frameworks of Hartree-Fock theory and density functional theory are presented in this course as approximate methods to solve the many-electron problem. A variety of ways to incorporate electron correlation are discussed. The application of these techniques to calculate the reactivity and spectroscopic properties of chemical systems, in addition to the thermodynamics and kinetics of chemical processes, is emphasized. This course also focuses on cutting edge methods to sample complex hypersurfaces, for reactions in liquids, catalysts and biological systems.
Differential equations are, in addition to a topic of study in mathematics, the main language in which the laws and phenomena of science are expressed. In its most basic sense, a differential equation is an expression that describes how a system changes from one moment of time to another, or from one point in space to another. When working with differential equations, the ultimate goal is to move from a microscopic view of relevant physics to a macroscopic view of the behavior of a system as a whole. Let’s look at a simple differential equation. From previous math and physics courses, we know that a car that is constantly accelerating in the x-direction, for example, obeys the equation d2x/dt2 = a, where a is the applied acceleration. This equation has two derivations with respect to time, so it is a second-order differential equation; because it has derivations with respect to only one variable (in this example, time), it is known as an ordinary differential equation, or an ODE. Let’s say t…
There are many different ways that you can go about solving engineering problems. One of the most important methods is energy analysis. Energy is a physical property that allows work of any kind to be done; without it, there would be no motion, no heat, and no life. You wouldn’t be able to get out of bed in the morning, but it wouldn’t matter, because there would be no sun. Without energy, our world would not exist as it does. Thermodynamics is the study of energy and its transfers though work. It is the link between heat and mechanical exertion. Once you have a solid grasp on thermodynamic concepts, you should be able to understand why certain mechanisms (such as engines and boilers) work the way they do, determine how much work they can put out, and know how to optimize these power systems. A thorough understanding of thermodynamics is crucial to any career that focuses on HVAC systems, car engines, or renewable energy technology. This course will focus on the fundamentals of thermod…
This course is intended to introduce the student to the concepts and methods of transport theory needed in neutron science applications. This course is a foundational study of the effects of multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department. Stochastic and deterministic simulation techniques will be introduced to the students.
Multivariable Calculus is an expansion of Single-Variable Calculus in that it extends single variable calculus to higher dimensions. You may find that these courses share many of the same basic concepts, and that Multivariable Calculus will simply extend your knowledge of functions to functions of several variables. The transition from single variable relationships to many variable relationships is not as simple as it may seem; you will find that multi-variable functions, in some cases, will yield counter-intuitive results. The structure of this course very much resembles the structure of Single-Variable Calculus I and II. We will begin by taking a fresh look at limits and continuity. With functions of many variables, you can approach a limit from many different directions. We will then move on to derivatives and the process by which we generalize them to higher dimensions. Finally, we will look at multiple integrals, or integration over regions of space as opposed to intervals. The goal of Mu…
This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light–squeezed states; multi-photon processes, Raman scattering; coherence–level crossings, quantum beats, double resonance, superradiance; trapping and cooling-light forces, laser cooling, atom optics, spectroscopy of trapped atoms and ions; atomic interactions–classical collisions, quantum scattering theory, ultracold collisions; and experimental methods.
Most mechanical engineering systems today involve significant amounts of electrical and electronic control systems. Effectively, most modern mechanical engineering systems are mechatronic systems. Mechatronics is the discipline that results from the synergetic application of electrical, electronic, computer, and control engineering in mechanical engineering systems. Thus, it is essential for the mechanical engineer to have a strong understanding of the composition and design of mechatronic systems, which is the goal of this course. Mechatronic systems are around us everywhere. A car contains many mechatronic systems, such as anti-lock braking systems, traction control, the engine control unit and cruise control, to name a few. A satellite dish position control unit is another example of a mechatronic system. Modern industrial automated processes would not be possible without the discipline of mechatronics, covering areas such as vehicle manufacturing, pharmaceutical industries, and food processing plants. R…
This survey chemistry course is designed to introduce students to the world of chemistry. Chemistry was born in ancient Egypt, when the principles of chemistry were first identified, studied, and applied in order to extract metal from ores, make alcoholic beverages, glaze pottery, turn fat into soap, and much more. What began as a quest to build better weapons or create potions capable of ensuring everlasting life has since become the foundation of modern science. Take a look around you: chemistry makes up almost everything you touch, see, and feel, from the shampoo you used this morning to the plastic container that holds your lunch. In this course, we will study chemistry from the ground up, learning the basics of the atom and its behavior. We will apply this knowledge to understand the chemical properties of matter and the changes and reactions that take place in all types of matter.
Dynamics is a sub-branch of the general field of study known as Mechanics. It is very closely related toand often combined withthe study of Statics, which you encountered in ME102: Mechanics I [1]. In both Statics and Dynamics, we use Newton’s 2nd Law: F = ma. In Statics, the sum of the applied forces is always zero, thus making the acceleration zero. This was very important to the structures studied in Statics. Catastrophe generally results when structures (like bridges and buildings) accelerate. Very likely you are quite pleasedeven if you do not realize it every timewhen you cross a bridge that does not accelerate while you are on it, and we have Newton’s First Law to thank for it. Newton’s First Law states that objects will continue to do what they are doing unless unbalanced forces make them do otherwise. This law includes the law equilibrium condition that the moments will also sum to zero, and that there will thus be no rotational acceleration. In Dynamics, the sum of the forces…
Mechanics ReView is a second look at introductory Newtonian Mechanics. It will give you a unified overview of mechanics that will dramatically increase your problem-solving ability. It is open to all students who meet the prerequisites (see right), but is especially designed for teachers and students who want to improve their existing understanding of mechanics.
Newtonian mechanics is the study of how forces change the motion of objects. This course begins with force, and moves on to straight-line motion, momentum, mechanical energy, rotational motion, angular momentum, and harmonic oscillators. Optional units include planetary orbits and a unit whose problems require multiple concepts to be applied to obtain one solution.
NOTE: New Section “Problem-solving Pedagogy”
We have developed a special approach to organizing the physics content knowledge and for applying it when solving problems. This approach is called “Modeling Applied to Problem Solving” and has been researched carefully and has proven effectiveness for improving students’ performance in a later physics course on Electricity and Magnetism.
If you are a teacher looking to improve your knowledge of mechanics, or to learn new approaches to teach your students, we encourage you to sign up in the special teacher section featuring a discussion forum for teachers to discuss teaching ideas and techniques related to the topics discussed in this course. To join these discussions, verify yourself as a teacher, and we will sign you up in the teacher forum.
Note that this forum is exclusively reserved for teachers, so please do not register if you are not a teacher.
Teachers in the United States, and especially in Massachusetts, can receive extra benefit from this course. We offer Professional Development Points (PDPs) at no charge to teachers in Massachusetts who complete our course. If you are in a different state, we instead offer Continuing Education Units through the American Association of Physics Teachers. There is a fee for this certificate.
Note: Taking this Course Involves Using Some Experimental Materials
The RELATE group that authors and administers this course is an education research group, dedicated to understanding and improving education, especially online. We showed that 8.MReV generated slightly more conceptual learning than a conventionally taught on-campus course - but we were unable to find exactly what caused this learning. (So far this is the only published measurement of learning in a MOOC). This summer we will be comparing learning from different types of online activities that will be administerered to randomly assigned sub-groups of our students. At certain points in the course, new vs. previously used sequences of activities will be assigned to different groups. We will then use common questions to compare the amount learned. Which group receives the new activities will be switched so that neither group will have all new activities.
Our experimental protocol has been approved by the MIT Committee on Use of Human Subjects. As part of this approval we have the obligation to inform you about these experiments and to assure you that:
- We will not divulge any information about you that may be identified as yours personally (e.g. a discussion post showing your user name).
- The grade for obtaining a certificate will be adjusted downwards (from 60%) to compensate if one group has harder materials.
Note: By clicking on the registration button, you indicate that you understand that everyone who participates in this course is randomly assigned to one of the groups described above.
Welcome, and we hope you will both learn from and enjoy this course.
FAQs
Is there a required textbook?
You do not need to buy a textbook. All material is included in this edX course and is viewable online. If you would like to use a textbook with the course (for example, as a reference), most calculus-level books are suitable. Introductory physics books by Young and Freedman, Halliday and Resnick, or Knight are all appropriate (and older editions are fine).
What if I take a vacation?
The course schedule is designed with this in mind! Course contents are released four weeks ahead of the deadline, so even if you have a four-week vacation, you do not need to miss any deadlines and can still complete all of the material.
Will I get a certficiate?
Yes! This course awards certificates to all who satisfactorily complete the required portion of the course.
How are grades assigned?
There are three parts of the course that are worth points: Checkpoint problems that are folded in with the reading, Homework problems that come at the end of each unit, and Quizzes that are at the end of every 1-2 units. Each is worth a varying number of points, and you will not have to do every problem.
The course consists of 11 required units and three optional units. You do not need to complete the optional units in order to receive a certificate.
There is no final exam.
This course is designed to introduce you to the study of Calculus. You will learn concrete applications of how calculus is used and, more importantly, why it works. Calculus is not a new discipline; it has been around since the days of Archimedes. However, Isaac Newton and Gottfried Leibniz, two 17th-century European mathematicians concurrently working on the same intellectual discovery hundreds of miles apart, were responsible for developing the field as we know it today. This brings us to our first question, what is today's Calculus? In its simplest terms, calculus is the study of functions, rates of change, and continuity. While you may have cultivated a basic understanding of functions in previous math courses, in this course you will come to a more advanced understanding of their complexity, learning to take a closer look at their behaviors and nuances. In this course, we will address three major topics: limits, derivatives, and integrals, as well as study their respective foundations and a…
In ASTR101, you will be introduced to our current understanding of the universe and how we have come to this understanding. We will start with the ancient Greeks and their belief that the universe was an orderly place capable of being understood. We will continue through history, as we acquired more information on the nature of the universe and our models of the universe changed to reflect this. This will take us through several different worldviews. As noted above, we will begin with the Greek worldview, which was characterized by the belief that the earth was the immovable center of the universe; this was known as the “geocentric” model. Although this worldview is wrong in many of its details, it was a very important first step. It explained the universe well enough that it lasted almost two thousand years. By 1600, this belief was beginning to be challenged by such people as Copernicus, Kepler, and Galileo; finally, it was completely done away with by the physics of Newton. By 1700, the…
This course is the second installment of Single-Variable Calculus. In Part I (MA101 [1]), we studied limits, derivatives, and basic integrals as a means to understand the behavior of functions. While this end goal remains the same, we will now focus on adapting what we have learned to applications. By the end of this course, you should have a solid understanding of functions and how they behave. You should also be able to apply the concepts we have learned in both Parts I and II of Single-Variable Calculus to a variety of situations. We will begin by revisiting and building upon what we know about the integral. We will then explore the mathematical applications of integration before delving into the second major topic of this course: series. The course will conclude with an introduction to differential equations. [1] http:///courses/ma101/…
The physics of the Universe appears to be dominated by the effects of four fundamental forces: gravity, electromagnetism, and weak and strong nuclear forces. These control how matter, energy, space, and time interact to produce our physical world. All other forces, such as the force you exert in standing up, are ultimately derived from these fundamental forces. We have direct daily experience with two of these forces: gravity and electromagnetism. Consider, for example, the everyday sight of a person sitting on a chair. The force holding the person on the chair is gravitational, while that gravitational force is balanced by material forces that “push up” to keep the individual in place, and these forces are the direct result of electromagnetic forces on the nanoscale. On a larger stage, gravity holds the celestial bodies in their orbits, while we see the Universe by the electromagnetic radiation (light, for example) with which it is filled. The electromagnetic force also makes possible the a…
Engineering design is the process of creating solutions to satisfy certain requirements given all the constraints. This course will focus on the decision-making process that affects various stages of design, including resource allocation, scheduling, facilities management, material procurement, inspection, and quality control. You will be introduced to the basic theoretical framework and several practical tools you can use to support decision making in the future. The first two units provide an overview of engineering design process and theories and methods for making decisions, including Analytic Hierarchy Process, Lean Six Sigma, and Quality Function Deployment. In Unit 3, you will learn about the basic principles of computerized decision support systems. Unit 4 discusses several advanced mathematical methods used for support decision making, including linear and dynamic programming, decision tree, and Bayesian inference.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.