Online courses directory (273)
This course will serve as your introduction to working in an engineering laboratory. You will learn to gather, analyze, interpret, and explain physical measurements for simple engineering systems in which only a few factors need be considered. This experience will be crucial to your success in analyzing more complicated systems in subsequent coursework and in the practice of mechanical engineering. We frequently encounter measurement systems in our everyday lives. Consider the following examples: 1. The many gauges found on the control panel of a motor vehicle indicate vehicle speed, engine coolant temperature, transmission setting, cabin temperature, engine speed, and oil pressureamongst many other measurements. 2. A routine visit to a physician often entails several measurements of varying complexityinternal temperature, blood pressure, internal appearance, heart rate, respiration rate, and tissue texture, amongst many, many more. 3. The experienced cook may use s…
This course deals with the transfer of work, energy, and material via gases and liquids. These fluids may undergo changes in temperature, pressure, density, and chemical composition during the transfer process and may act on or be acted on by external systems. You must fully understand these processes if you are an engineer working to analyze, troubleshoot, or improve existing processes and/or innovate and design new ones. In your everyday life, you will likely encounter examples of the thermal-fluid systems we will study in this course. Consider the following scenarios: Read this recent report [1] by Gary Goettling for the Georgia Tech Alumni Association.* In it, Goettling describes a refrigeration system with no moving parts based on improvements to a patent filed by Einstein and Szilard in 1930. As an engineer, how would you go about evaluating this design for energy efficiency, safety, reliability, and manufacturing, operating, and installation costs? Have you ever wondered how the level se…
Numerical methods have been used to solve mathematical expressions of engineering and scientific problems for at least 4000 years (for some historical discussion you may wish to browse the Ethnomathematics Digital Library [1] or the MacTutor History of Mathematics Archive [2] from St. Andrews University).* Such methods apply numerical approximation in order to convert continuous mathematical problems (for example, determining the mechanical stress throughout a loaded truss) into systems of discrete equations that can be solved with sufficient accuracy by machine. Numerical methods provide a way for the engineer to translate the language of mathematics and physics into information that may be used to make engineering decisions. Often, this translation is implemented so that calculations may be done by machines (computers). The types of problems that you encounter as an engineer may involve a wide variety of mathematical phenomena, and hence it will benefit you to have an equally wide range of numerical met…
Physics 140 offers introduction to mechanics, the physics of motion. Topics include: linear motion, vectors, projectiles, relative velocity and acceleration, Newton's laws, particle dynamics, work and energy, linear momentum, torque, angular momentum, gravitation, planetary motion, fluid statics and dynamics, simple harmonic motion, waves and sound. Course Level: Undergraduate This Work, Physics 140 - General Physics 1, by Gus Evrard is licensed under a Creative Commons Attribution license.
Physics 101 is the first course in the Introduction to Physics sequence. In general, the quest of physics is to develop descriptions of the natural world that correspond closely to actual observations. Given this definition, the story behind everything in the universe, from rocks falling to stars shining, is one of physics. In principle, the events of the natural world represent no more than the interactions of the elementary particles that comprise the material universe. In practice, however, it turns out to be more complicated than that. As the system under study becomes more and more complex, it becomes less and less clear how the basic laws of physics account for the observations. Other branches of science, such as chemistry or biology, are needed. In principle, biology is based on the laws of chemistry, and chemistry is based on the laws of physics, but our ability to understand something as complex as life in terms of the laws of physics is well beyond our present knowledge. Physics is, however, the…
This self-contained course presents a sampling of the fields of Materials Engineering and Materials Science. This course is intended primarily for engineering students who are not planning to major in either Materials Engineering or Materials Science. We will focus primarily on the concerns of the materials engineerthe person interested in choosing materials to make a finished product. This selection is determined by compromises among material properties, ease of fabrication, and cost. In contrast, the materials scientist is concerned with understanding the relationships between material properties and the internal structure of a materialthat is, atomic bonding, arrangements of atoms, grain structure, and other microscopically observable features. We leave most of these associations to advanced courses, which will use more chemistry and physics than needed for this course. The course is divided into four units: Unit 1: Ways That Materials Can Fail What Can Go Wrong? Unit 2: Classes of Engineering Mate…
Mechanics studies how forces affect bodies in motionhow, for example, a bullet is fired from a gun or a top is set in motion by the flick of a wrist. As an engineer, you will find mechanics of vital importance to any field you choose to pursue. Whether you are designing a bridge or implementing an electrical power unit for an elevator, you will need to know how to determine which forces can be applied to a body without causing it to break, what happens when bodies collide, how an object moves when different forces are applied to it, and so on. This course will introduce you to the core concepts of mechanics that will enable you to answer these questions as you strive to design, test, and manufacture safe and reliable products. While most universities split introductory mechanics into two courses, with one devoted to statics and the other to solids, this course will introduce you to both areas. You will begin by learning about staticsobjects that are not accelerating (in other words, objects that are…
Effective communication is essential to teamwork, and teamwork is essential to accomplishing complex engineering work. In this course, you will learn several aspects of effective technical communication that will help prepare you to work successfully on an engineering team. The strategies and techniques learned here are also applicable to other situationsfor example, preparing a résumé and cover letter, conducting a successful job interview, negotiating to make a major purchase or sale, and navigating through legal situations that you might encounter. As an example, consider the following situation. You arrive home after a week-long vacation and find a note on your door saying: Dude My plumber’s cut your phone cord. I reckon they’ll fix it soon. On the other hand, consider that you find a note resembling: From: John Atkins October 24, 2015 2828 Fairlane Rd. Tel: 703-555-4800 To: Occupant 2824 Fairlane Rd. I regret to inform you that my plumbing contractor…
The physics of the universe appears to be dominated by the effects of four fundamental forces: gravity, electromagnetism, weak nuclear forces, and strong nuclear forces. These forces control how matter, energy, space, and time interact to produce our physical world. All other forces, such as the force you exert in standing up, are ultimately derived from these fundamental forces. We have direct daily experience with two of these forces: gravity and electromagnetism. Consider, for example, the everyday sight of a person sitting on a chair. The force holding the person on the chair is gravitational, and that gravitational force balances with material forces that “push up” to keep the individual in place. These forces are the direct result of electromagnetic forces on the nanoscale. On a larger stage, gravity holds the celestial bodies in their orbits, while we see the universe by the electromagnetic radiation (light, for example) with which it is filled. The electromagnetic force also makes…
You may think at first that the words “fluid” and “mechanics” should not go together. However, the ways in which fluids (gases and liquids and a few other materials) respond to forces, exert forces, and move from one place to another (their mechanics) are crucially important to many aspects of our experience and our ability to build tools. Consider, for example, the following areas in which fluid mechanics play an important, if not fundamental, role: Meteorology and ocean dynamics (tsunamis, hurricanes, and tornados) Fluid flow within living systems (blood flow, lymph flow, air flow) Hydraulic machinery (jacks, pumps, lifts, steering mechanisms) Chemical processing and piping (pumps, reactors, separators, pipelines) Turbomachinery (jet engines, power plants) Aeronautical and ship machinery (airplanes, helicopters, boats and ships) In this course you will first learn about the definition of a fluid and the properties of a fluid, such as density, compressibility, and viscosity. You wil…
This course will ask you to apply the knowledge you have acquired over the course of the entire mechanical engineering curriculum. It draws upon what you have learned in your courses in mechanics, CAD, materials and processing, thermal and fluid systems, and dynamics and control, just to name a few. This course is equivalent to the capstone course or senior design project that you would need to complete as a senior in a mechanical engineering program in a traditional American university setting. This course begins in Unit 1 by introducing you to the stages of the design process. We will then focus on tools and skill sets that are particularly important for succeeding in a design project, including design planning, teamwork skills, project management, and design reporting. Unit 2 covers important design principles and considerations. You will learn about economic implications (you must keep cost in mind while designing!), the ethical, societal, and environmental impacts of design decisions, and pro…
This course will survey physics concepts and their respective applications. It is intended as a basic introduction to the current physical understanding of our universe. Originally part of “Natural Philosophy,” the first scientific studies were conducted after Thales of Miletus established a rational basis for the understanding of natural phenomena circa 600 BCE. One of the Seven Sages of Greek philosophy, Thales sought to identify the substances that make up the natural world and explain how they produce the physical phenomena we observe. Prior to Thales, humans had explained events by attributing supernatural causes to them; his work represents the very beginning of scientific analysis. The Scientific Method used today builds on this early foundation, but adds the essential underpinnings of evidence based on experiments or observation. Briefly, the modern scientific method involves forming a hypothesis about the cause of a general phenomenon, using that hypothetical model to predict the outc…
Build your earth science vocabulary and learn about cycles of matter and types of sedimentary rocks through the Education Portal course Earth Science 101: Earth Science. Our series of video lessons and accompanying self-assessment quizzes can help you boost your scientific knowledge ahead of the Excelsior Earth Science exam . This course was designed by experienced educators and examines both science basics, like experimental design and systems of measurement, and more advanced topics, such as analysis of rock deformation and theories of continental drift.
The study of dynamic systems focuses on the behavior of physical systems as well as the physics of individual components and the interactions between them. Control systems are designed to enable dynamic systems to respond in a specific manner. In this course, we will learn about the mathematical modeling, analysis, and control of physical systems that are in rest, in motion, or acted upon by a force. Dynamic systems can be mechanical, electrical, thermal, hydraulic, pneumatic, or any combination thereof. An electrical motor is a good example of a dynamic system in which electricity is used to drive the motor’s mechanical movement. The operation of the motor is controlled by altering the electric current or voltage. Another good example is a car’s suspension system, which is designed to curb abnormal vibrations while riding on a bumpy road. In order to design a suspension system, you must analyze the mathematical equations of the physics of the suspension and its response (i.e. how effectivel…
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.