Online courses directory (272)
Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials through problem sets and a project literature critique.
This core class in the Environmental M.Eng. program is for all students interested in the behavior of chemicals in the environment. The emphasis is on man-made chemicals; their movement through water, air, and soil; and their eventual fate. Physical transport, as well as chemical and biological sources and sinks, are discussed. Linkages to health effects, sources and control, and policy aspects are discussed and debated.
6.270 is a hands-on, learn-by-doing class, in which participants design and build a robot that will play in a competition at the end of January. The goal for the students is to design a machine that will be able to navigate its way around the playing surface, recognize other opponents, and manipulate game objects. Unlike the machines in Design and Manufacturing I (2.007), 6.270 robots are totally autonomous, so once a round begins, there is no human intervention.
The goal of 6.270 is to teach students about robotic design by giving them the hardware, software, and information they need to design, build, and debug their own robot. The subject includes concepts and applications that are related to various MIT classes (e.g. 6.001, 6.002, 6.004, and 2.007), though there are no formal prerequisites for 6.270.
This course covers the design, construction, and testing of field robotic systems, through team projects with each student responsible for a specific subsystem. Projects focus on electronics, instrumentation, and machine elements. Design for operation in uncertain conditions is a focus point, with ocean waves and marine structures as a central theme. Topics include basic statistics, linear systems, Fourier transforms, random processes, spectra, ethics in engineering practice, and extreme events with applications in design.
This course is taken by mechanical engineering majors during their senior year to prepare a detailed thesis proposal under the guidance of staff from the Writing Program. The thesis proposal must bear the endorsement of the thesis supervisor and indicate the number of units planned.
This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.
This semester students are asked to transform the Hereshoff Museum in Bristol, Rhode Island, through processes of erasure and addition. Hereshoff Manufacturing was recognized as one of the premier builders of America's Cup racing boats between 1890's and 1930's. The studio, however, is about more than the program. It is about land, water, and wind and the search for expressing materially and tectonically the relationships between these principle conditions. That is, where the land is primarily about stasis (docking, anchoring and referencing our locus), water's fluidity holds the latent promise of movement and freedom. Movement is activated by wind, allowing for negotiating the relationship between water and land.
This course is offered to undergraduates and introduces students to the formulation, methodology, and techniques for numerical solution of engineering problems. Topics covered include: fundamental principles of digital computing and the implications for algorithm accuracy and stability, error propagation and stability, the solution of systems of linear equations, including direct and iterative techniques, roots of equations and systems of equations, numerical interpolation, differentiation and integration, fundamentals of finite-difference solutions to ordinary differential equations, and error and convergence analysis. The subject is taught the first half of the term.
This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.002J. In 2005, ocean engineering became part of Course 2 (Department of Mechanical Engineering), and this subject was renumbered 2.993J.
6.374 examines the device and circuit level optimization of digital building blocks. Topics covered include: MOS device models including Deep Sub-Micron effects; circuit design styles for logic, arithmetic and sequential blocks; estimation and minimization of energy consumption; interconnect models and parasitics; device sizing and logical effort; timing issues (clock skew and jitter) and active clock distribution techniques; memory architectures, circuits (sense amplifiers) and devices; testing of integrated circuits. The course employs extensive use of circuit layout and SPICE in design projects and software labs.
This course focuses on the fundamentals of structure, energetics, and bonding that underpin materials science. It is the introductory lecture class for sophomore students in Materials Science and Engineering, taken with 3.014 and 3.016 to create a unified introduction to the subject. Topics include: an introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to atomistic and molecular models of materials; the role of electronic bonding in determining the energy, structure, and stability of materials; quantum mechanical descriptions of interacting electrons and atoms; materials phenomena, such as heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism; symmetry properties of molecules and solids; structure of complex, disordered, and amorphous materials; tensors and constraints on physical properties imposed by symmetry; and determination of structure through diffraction. Real-world applications include engineered alloys, electronic and magnetic materials, ionic and network solids, polymers, and biomaterials.
This course is a core subject in MIT's undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.
Intensive coverage of precision engineering theory, heuristics, and applications pertaining to the design of systems ranging from consumer products to machine tools. Topics covered include: economics, project management, and design philosophy; principles of accuracy, repeatability, and resolution; error budgeting; sensors; sensor mounting; systems design; bearings; actuators and transmissions; system integration driven by functional requirements, and operating physics. Emphasis on developing creative designs, which are optimized by analytical techniques applied via spreadsheets. This is a projects course with lectures consisting of design teams presenting their work and the class helping to develop solutions; thereby everyone learning from everyone's projects.
This course consists of a series of seminars focused on the development of professional skills. Each semester focuses on a different topic, resulting in a repeating cycle that covers medical ethics, responsible conduct of research, written and oral technical communication, and translational issues. Material and activities include guest lectures, case studies, interactive small group discussions, and role-playing simulations.
This course discusses the Linearized theory of wave phenomena in applied mechanics. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics and other subjects. The topics include: basic concepts, one dimensional examples, characteristics, dispersion and group velocity, scattering, transmission and reflection, two dimensional reflection and refraction across an interface, mode conversion in elastic waves, diffraction and parabolic approximation, radiation from a line source, surface Rayleigh waves and Love waves in elastic media, waves on the sea surface and internal waves in a stratified fluid, waves in moving media, ship wave pattern, atmospheric lee waves behind an obstacle, and waves through a laminated media.
Designed to familiarize students with theories and analytical tools useful for studying research literature, this course is a survey of fluid mechanical problems in the water environment. Because of the inherent nonlinearities in the governing equations, we shall emphasize the art of making analytical approximations not only for facilitating calculations but also for gaining deeper physical insight. The importance of scales will be discussed throughout the course in lectures and homeworks. Mathematical techniques beyond the usual preparation of first-year graduate students will be introduced as a part of the course. Topics vary from year to year.
The course considers the growing popularity of sustainability and its implications for the practice of engineering, particularly for the built environment. Two particular methodologies are featured: life cycle assessment (LCA) and Leadership in Energy and Environmental Design (LEED). The fundamentals of each approach will be presented. Specific topics covered include water and wastewater management, energy use, material selection, and construction.
This subject provides an introduction to the mechanics of materials and structures. You will be introduced to and become familiar with all relevant physical properties and fundamental laws governing the behavior of materials and structures and you will learn how to solve a variety of problems of interest to civil and environmental engineers. While there will be a chance for you to put your mathematical skills obtained in 18.01, 18.02, and eventually 18.03 to use in this subject, the emphasis is on the physical understanding of why a material or structure behaves the way it does in the engineering design of materials and structures.
1.012 introduces students to the theory, tools, and techniques of engineering design and creative problem-solving, as well as design issues and practices in civil engineering. The course includes several design cases, with an emphasis on built facilities (e.g., buildings, bridges and roads). Project design explicitly concerns technical approaches as well as consideration of the existing built environment, natural environment, economic and social factors, and expected life span. A large design case is introduced, which is used in the subsequent specialty area design subjects (1.031, 1.041, 1.051) and the capstone design subject (1.013).
This course discusses management methods of relevance to public transportation systems. Topics include strategic planning management, labor relations, maintenance planning and administration, financing, marketing and fare policy, and management information and decision support systems. The course shows how these general management tasks are dealt with in the transit industry and presents alternative strategies. It also identifies alternative arrangements for service provision, including different ways of involving the private sector in public transportation.
This course introduces students to basic properties of structural materials and behavior of simple structural elements and systems through a series of experiments. Students learn experimental technique, data collection, reduction and analysis, and presentation of results. Students generally take this subject during the same semester as 1.050, Solid Mechanics.
This course provides an overview of robot mechanisms, dynamics, and intelligent controls. Topics include planar and spatial kinematics, and motion planning; mechanism design for manipulators and mobile robots, multi-rigid-body dynamics, 3D graphic simulation; control design, actuators, and sensors; wireless networking, task modeling, human-machine interface, and embedded software. Weekly laboratories provide experience with servo drives, real-time control, and embedded software. Students will design and fabricate working robotic systems in a group-based term project.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.