Online courses directory (19947)
Complete Mind & Body Fitness in 10 Minutes A Day! Simple Enough For All Fitness Levels & Ages Build Super Health & Power
Advanced Analytic Methods in Science and Engineering is a comprehensive treatment of the advanced methods of applied mathematics. It was designed to strengthen the mathematical abilities of graduate students and train them to think on their own.
This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the graduate version, Sustainable Energy, complete additional assignments.
A great variety of processes affect the surface of the Earth. Topics to be covered are production and movement of surficial materials; soils and soil erosion; precipitation; streams and lakes; groundwater flow; glaciers and their deposits. The course combines aspects of geology, climatology, hydrology, and soil science to present a coherent introduction to the surface of the Earth, with emphasis on both fundamental concepts and practical applications, as a basis for understanding and intelligent management of the Earth's physical and chemical environment.
The objective of this course is to learn the financial tools needed to make good business decisions. The course presents the basic insights of corporate finance theory, but emphasizes the application of theory to real business decisions. Each session involves class discussion, some centered on lectures and others around business cases.
Innovation in global health practice requires leaders who are trained to think and act like entrepreneurs. Whether at a hospital bedside or in a remote village, global healthcare leaders must understand both the business of running a social venture as well as how to plan for and provide access to life saving medicines and essential health services.
Each week, the course features a lecture and skills-based tutorial session led by industry, non-profit foundation, technology, and academic leaders to think outside the box in tackling and solving problems in innovation for global health practice through the rationale design of technology and service solutions. The lectures provide the foundation for faculty-mentored pilot project from MOH, students, or non-profit sponsors that may involve creation of a market or business plan, product development, or a research study design.
This subject is about building, running, and growing an organization. Subject has four central themes:
- How to think analytically about designing organizational systems
- How leaders, especially founders, play a critical role in shaping an organization's culture
- What really needs to be done to build a successful organization for the long-term and
- What one can do to improve the likelihood of personal success.
Not a survey of entrepreneurship or leadership; subject addresses the principles of organizational architecture, group behavior and performance, interpersonal influence, leadership and motivation in entrepreneurial settings. Through a series of cases, lectures, readings and exercises students develop competencies in organizational design, human resources management, leadership and organizational behavior in the context of a new, small firm.
Subject combines practical instruction, readings, lectures, field trips, visiting artists, group discussions, and individual reviews. Fosters a critical awareness of how images in our culture are produced and constructed. Student-initiated term project at the core of exploration. Special consideration given to the relationship of space and the photographic image. Practical instruction in basic black and white techniques, digital imaging, fundamentals of camera operation, lighting, film exposure, development, and printing. Open to beginning and advanced students. Lab fee. Enrollment limited with preference given to current Master of Architecture students.
This course is an introduction to cognitive development focusing on children's understanding of objects, agents, and causality. It develops a critical understanding of experimental design. The course discusses how developmental research might address philosophical questions about the origins of knowledge, appearance and reality, and the problem of other minds. It provides instruction and practice in written communication as needed for cognitive science research (including critical reviews of journal papers, a literature review and an original research proposal), as well as instruction and practice in oral communication in the form of a poster presentation of a journal paper.
This class presents a detailed study of soil properties with emphasis on interpretation of field and laboratory test data and their use in soft-ground construction engineering. Topics to be covered include: consolidation and secondary compression; basic strength principles; stress-strain strength behavior of clays, emphasizing effects of sample disturbance, anisotropy, and strain rate; strength and compression of granular soils; and engineering properties of compacted soils. Some knowledge of field and laboratory testing is assumed for all students.
This class provides a space for medical students and MD/PhD students, as well as HASTS (History, Anthropology, Science, Technology, and Society) PhD students to discuss social and ethical issues in the biosciences and biotechnologies as they are being developed. Discussions are with course faculty and with leading figures in developing technologies such as George Daley or George Church in stem cell or genomics research, Bruce Walker or Pardis Sabeti in setting up laboratories in Africa, Paul Farmer and Partners in Health colleagues in building local support systems and first world quality care in Haiti, Peru, and Rwanda, and Amy Farber in building patient-centered therapeutic-outcome research for critical but "orphan" diseases. Goals include stimulating students to think about applying their learning in Boston to countries around the world, including using the experiences they have had in their home countries or research experience abroad. Goals also include a mix of patient-doctor care perspectives from medical anthropology, and moving upstream in the research chain to questions of how to move discoveries from basic research through the pipelines into clinical and bedside care.