Online courses directory (19947)
Note: This is the <span style="font-weight: bold;">ARABIC </span>Version. For the English version, <a href="http://alison.com/courses/MSDL-FULL">click here</a>.<br /><br />The goal of Digital Literacy is to teach and assess basic computer concepts and skills so that people can use computer technology in everyday life to develop new social and economic opportunities for themselves, their families, and their communities. This course combines the 5 Microsoft modules to offer a comprehensive course on computer basic, the internet, productivity programmes and computer security. <br />
Build your earth science vocabulary and learn about cycles of matter and types of sedimentary rocks through the Education Portal course Earth Science 101: Earth Science. Our series of video lessons and accompanying self-assessment quizzes can help you boost your scientific knowledge ahead of the Excelsior Earth Science exam . This course was designed by experienced educators and examines both science basics, like experimental design and systems of measurement, and more advanced topics, such as analysis of rock deformation and theories of continental drift.
Learn how to use Adobe Premiere with Expert Film Maker Phil Hawkins
One of America's top 100 business thought leaders shares his best ideas on how to run a highly successful business.
Learn colloquial Brazilian Portuguese in short, fun sessions!
Online Cooking Classes to learn dozens of delicious vegan recipes and WOW your family.
Learn how to think more methodically and how to solve problems more effectively
Introduction to cell structure & function, molecular & organism genetics, animal development, form & function.
This course is designed to acquaint students with a variety of approaches to the past used by historians writing in the
How to set banners broker strategy to market your banners broker business and build your team.
Learn how to code an HTML/CSS pages from a Photoshop mock up in this PSD to HTML tutorial course.
Learn Introductory through Advanced material in Microsoft's popular digital notebook program.
This class includes a brief review of applied aerodynamics and modern approaches in aircraft stability and control. Topics covered include static stability and trim; stability derivatives and characteristic longitudinal and lateral-directional motions; and physical effects of the wing, fuselage, and tail on aircraft motion. Control methods and systems are discussed, with emphasis on flight vehicle stabilization by classical and modern control techniques; time and frequency domain analysis of control system performance; and human-pilot models and pilot-in-the-loop controls with applications. Other topics covered include V/STOL stability, dynamics, and control during transition from hover to forward flight; parameter sensitivity; and handling quality analysis of aircraft through variable flight conditions. There will be a brief discussion of motion at high angles-of-attack, roll coupling, and other nonlinear flight regimes.
This course analyzes the functions of a complex variable and the calculus of residues. It also covers subjects such as ordinary differential equations, partial differential equations, Bessel and Legendre functions, and the Sturm-Liouville theory.
6.004 offers an introduction to the engineering of digital systems. Starting with MOS transistors, the course develops a series of building blocks — logic gates, combinational and sequential circuits, finite-state machines, computers and finally complete systems. Both hardware and software mechanisms are explored through a series of design examples.
6.004 is required material for any EECS undergraduate who wants to understand (and ultimately design) digital systems. A good grasp of the material is essential for later courses in digital design, computer architecture and systems. The problem sets and lab exercises are intended to give students "hands-on" experience in designing digital systems; each student completes a gate-level design for a reduced instruction set computer (RISC) processor during the semester.
This subject offers an interactive introduction to discrete mathematics oriented toward computer science and engineering. The subject coverage divides roughly into thirds:
- Fundamental concepts of mathematics: Definitions, proofs, sets, functions, relations.
- Discrete structures: graphs, state machines, modular arithmetic, counting.
- Discrete probability theory.
On completion of 6.042J, students will be able to explain and apply the basic methods of discrete (noncontinuous) mathematics in computer science. They will be able to use these methods in subsequent courses in the design and analysis of algorithms, computability theory, software engineering, and computer systems.
Interactive site components can be found on the Unit pages in the left-hand navigational bar, starting with Unit 1: Proofs.
This course explores perspectives in the policy process - agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and group dynamics, and management of multiple actors and leadership.
Principles of heat and mass transfer. Steady and transient conduction and diffusion. Radiative heat transfer. Convective transport of heat and mass in both laminar and turbulent flows. Emphasis on the development of a physical understanding of the underlying phenomena and upon the ability to solve real heat and mass transfer problems of engineering significance.
Treatment of the laws of thermodynamics and their applications to equilibrium and the properties of materials. Provides a foundation to treat general phenomena in materials science and engineering, including chemical reactions, magnetism, polarizability, and elasticity. Develops relations pertaining to multiphase equilibria as determined by a treatment of solution thermodynamics. Develops graphical constructions that are essential for the interpretation of phase diagrams. Treatment includes electrochemical equilibria and surface thermodynamics. Introduces aspects of statistical thermodynamics as they relate to macroscopic equilibrium phenomena.
This course will guide students through the process of forming economic hypotheses, gathering the appropriate data, analyzing them, and effectively communicating their results.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.