Online courses directory (39)
Diffusion and Osmosis. Parts of a cell. Chromosomes, Chromatids, Chromatin, etc.. Mitosis, Meiosis and Sexual Reproduction. Phases of Mitosis. Phases of Meiosis. Embryonic Stem Cells. Cancer. Diffusion and Osmosis. Parts of a cell. Chromosomes, Chromatids, Chromatin, etc.. Mitosis, Meiosis and Sexual Reproduction. Phases of Mitosis. Phases of Meiosis. Embryonic Stem Cells. Cancer.
ATP: Adenosine Triphosphate. Introduction to Cellular Respiration. Oxidation and Reduction Review From Biological Point-of-View. Oxidation and Reduction in Cellular Respiration. Krebs / Citric Acid Cycle. Glycolysis. Electron Transport Chain. Oxidative Phosphorylation and Chemiosmosis. ATP: Adenosine Triphosphate. Introduction to Cellular Respiration. Oxidation and Reduction Review From Biological Point-of-View. Oxidation and Reduction in Cellular Respiration. Krebs / Citric Acid Cycle. Glycolysis. Electron Transport Chain. Oxidative Phosphorylation and Chemiosmosis.
Introduction to Evolution and Natural Selection. Ape Clarification. Intelligent Design and Evolution. Evolution Clarification. Natural Selection and the Owl Butterfly. DNA. Variation in a Species. Introduction to Evolution and Natural Selection. Ape Clarification. Intelligent Design and Evolution. Evolution Clarification. Natural Selection and the Owl Butterfly. DNA. Variation in a Species.
Introduction to Heredity. Punnett Square Fun. Hardy-Weinberg Principle. Sex-Linked Traits. Genetics 101 Part 1: What are genes?. Genetics 101 Part 2: What are SNPs?. Genetics 101 Part 3: Where do your genes come from?. Genetics 101 Part 4: What are Phenotypes?. Introduction to Heredity. Punnett Square Fun. Hardy-Weinberg Principle. Sex-Linked Traits. Genetics 101 Part 1: What are genes?. Genetics 101 Part 2: What are SNPs?. Genetics 101 Part 3: Where do your genes come from?. Genetics 101 Part 4: What are Phenotypes?.
The Lungs and Pulmonary System. Red blood cells. Circulatory System and the Heart. Hemoglobin. Anatomy of a Neuron. Sodium Potassium Pump. Correction to Sodium and Potassium Pump Video. Electrotonic and Action Potentials. Saltatory Conduction in Neurons. Neuronal Synapses (Chemical). Myosin and Actin. Tropomyosin and troponin and their role in regulating muscle contraction. Role of the Sarcoplasmic Reticulum in Muscle Cells. Anatomy of a muscle cell. The Kidney and Nephron. Secondary Active Transport in the Nephron. The Lungs and Pulmonary System. Red blood cells. Circulatory System and the Heart. Hemoglobin. Anatomy of a Neuron. Sodium Potassium Pump. Correction to Sodium and Potassium Pump Video. Electrotonic and Action Potentials. Saltatory Conduction in Neurons. Neuronal Synapses (Chemical). Myosin and Actin. Tropomyosin and troponin and their role in regulating muscle contraction. Role of the Sarcoplasmic Reticulum in Muscle Cells. Anatomy of a muscle cell. The Kidney and Nephron. Secondary Active Transport in the Nephron.
Role of Phagocytes in Innate or Nonspecific Immunity. Types of immune responses: Innate and Adaptive. Humoral vs. Cell-Mediated. B Lymphocytes (B cells). Professional Antigen Presenting Cells (APC) and MHC II complexes. Helper T Cells. Cytotoxic T Cells. Review of B cells, CD4+ T cells and CD8+ T cells. Inflammatory Response. Role of Phagocytes in Innate or Nonspecific Immunity. Types of immune responses: Innate and Adaptive. Humoral vs. Cell-Mediated. B Lymphocytes (B cells). Professional Antigen Presenting Cells (APC) and MHC II complexes. Helper T Cells. Cytotoxic T Cells. Review of B cells, CD4+ T cells and CD8+ T cells. Inflammatory Response.
ATP: Adenosine Triphosphate. Photosynthesis. Photosynthesis: Light Reactions 1. Photosynthesis: Light Reactions and Photophosphorylation. Photosynthesis: Calvin Cycle. Photorespiration. C-4 Photosynthesis. CAM Plants. ATP: Adenosine Triphosphate. Photosynthesis. Photosynthesis: Light Reactions 1. Photosynthesis: Light Reactions and Photophosphorylation. Photosynthesis: Calvin Cycle. Photorespiration. C-4 Photosynthesis. CAM Plants.
Taxonomy and the Tree of Life. Species. Bacteria. Viruses. Human Prehistory 101: Prologue. Human Prehistory 101 Part 1: Out of (Eastern) Africa. Human Prehistory 101 Part 2: Weathering The Storm. Human Prehistory 101 Part 3: Agriculture Rocks Our World. Human Prehistory 101: Epilogue. Taxonomy and the Tree of Life. Species. Bacteria. Viruses. Human Prehistory 101: Prologue. Human Prehistory 101 Part 1: Out of (Eastern) Africa. Human Prehistory 101 Part 2: Weathering The Storm. Human Prehistory 101 Part 3: Agriculture Rocks Our World. Human Prehistory 101: Epilogue.
Acid Base Introduction. pH, pOH of Strong Acids and Bases. pH of a Weak Acid. pH of a Weak Base. Conjugate Acids and Bases. pKa and pKb Relationship. Buffers and Hendersen-Hasselbalch. Strong Acid Titration. Weak Acid Titration. Half Equivalence Point. Titration Roundup. Acid Base Titration. Acid Base Introduction. pH, pOH of Strong Acids and Bases. pH of a Weak Acid. pH of a Weak Base. Conjugate Acids and Bases. pKa and pKb Relationship. Buffers and Hendersen-Hasselbalch. Strong Acid Titration. Weak Acid Titration. Half Equivalence Point. Titration Roundup. Acid Base Titration.
Molecular and Empirical Formulas. The Mole and Avogadro's Number. Formula from Mass Composition. Another mass composition problem. Balancing Chemical Equations. Stoichiometry. Stoichiometry Example Problem 1. Stoichiometry Example Problem 2. Stoichiometry: Limiting Reagent. Limiting Reactant Example Problem 1. Spectrophotometry Introduction. Spectrophotometry Example. Molecular and Empirical Formulas. The Mole and Avogadro's Number. Formula from Mass Composition. Another mass composition problem. Balancing Chemical Equations. Stoichiometry. Stoichiometry Example Problem 1. Stoichiometry Example Problem 2. Stoichiometry: Limiting Reagent. Limiting Reactant Example Problem 1. Spectrophotometry Introduction. Spectrophotometry Example.
Ideal Gas Equation: PV=nRT. Ideal Gas Equation Example 1. Ideal Gas Equation Example 2. Ideal Gas Equation Example 3. Ideal Gas Equation Example 4. Partial Pressure. Vapor Pressure Example. Ideal Gas Equation: PV=nRT. Ideal Gas Equation Example 1. Ideal Gas Equation Example 2. Ideal Gas Equation Example 3. Ideal Gas Equation Example 4. Partial Pressure. Vapor Pressure Example.
Groups of the Periodic Table. Valence Electrons. Periodic Table Trends: Ionization Energy. Other Periodic Table Trends. Ionic, Covalent, and Metallic Bonds. Groups of the Periodic Table. Valence Electrons. Periodic Table Trends: Ionization Energy. Other Periodic Table Trends. Ionic, Covalent, and Metallic Bonds.
Types of Decay. Half-Life. Exponential Decay Formula Proof (can skip, involves Calculus). Introduction to Exponential Decay. More Exponential Decay Examples. Types of Decay. Half-Life. Exponential Decay Formula Proof (can skip, involves Calculus). Introduction to Exponential Decay. More Exponential Decay Examples.
Introduction to Kinetics. Reactions in Equilibrium. Mini-Video on Ion Size. Keq Intuition (mathy and not necessary to progress). Keq derivation intuition (can skip; bit mathy). Heterogeneous Equilibrium. Le Chatelier's Principle. Introduction to pH, pOH, and pKw. Introduction to Kinetics. Reactions in Equilibrium. Mini-Video on Ion Size. Keq Intuition (mathy and not necessary to progress). Keq derivation intuition (can skip; bit mathy). Heterogeneous Equilibrium. Le Chatelier's Principle. Introduction to pH, pOH, and pKw.
States of Matter. States of Matter Follow-Up. Specific Heat, Heat of Fusion and Vaporization. Chilling Water Problem. Phase Diagrams. Van Der Waals Forces. Covalent Networks, Metallic, and Ionic Crystals. Vapor Pressure. Suspensions, Colloids and Solutions. Solubility. Boiling Point Elevation and Freezing Point Suppression. Change of State Example. States of Matter. States of Matter Follow-Up. Specific Heat, Heat of Fusion and Vaporization. Chilling Water Problem. Phase Diagrams. Van Der Waals Forces. Covalent Networks, Metallic, and Ionic Crystals. Vapor Pressure. Suspensions, Colloids and Solutions. Solubility. Boiling Point Elevation and Freezing Point Suppression. Change of State Example.
What is the Earth made up of and how do we know? What causes the seasons? Are there longer-ranging cycles in Earth's climate?. Plate Tectonics-- Difference between crust and lithosphere. Structure of the Earth. Plate Tectonics -- Evidence of plate movement. Plate Tectonics -- Geological Features of Divergent Plate Boundaries. Plate Tectonics-- Geological features of Convergent Plate Boundaries. Plates Moving Due to Convection in Mantle. Hawaiian Islands Formation. Pangaea. Compositional and Mechanical Layers of the Earth. How we know about the Earth's core. Seismic Waves. Why S-Waves Only Travel in Solids. Refraction of Seismic Waves. The Mohorovicic Seismic Discontinuity. Seasons Aren't Dictated by Closeness to Sun. How Earth's Tilt Causes Seasons. Are Southern Hemisphere Seasons More Severe?. Milankovitch Cycles Precession and Obliquity. Precession Causing Perihelion to Happen Later. What Causes Precession and Other Orbital Changes. Apsidal Precession (Perihelion Precession) and Milankovitch Cycles. Plate Tectonics-- Difference between crust and lithosphere. Structure of the Earth. Plate Tectonics -- Evidence of plate movement. Plate Tectonics -- Geological Features of Divergent Plate Boundaries. Plate Tectonics-- Geological features of Convergent Plate Boundaries. Plates Moving Due to Convection in Mantle. Hawaiian Islands Formation. Pangaea. Compositional and Mechanical Layers of the Earth. How we know about the Earth's core. Seismic Waves. Why S-Waves Only Travel in Solids. Refraction of Seismic Waves. The Mohorovicic Seismic Discontinuity. Seasons Aren't Dictated by Closeness to Sun. How Earth's Tilt Causes Seasons. Are Southern Hemisphere Seasons More Severe?. Milankovitch Cycles Precession and Obliquity. Precession Causing Perihelion to Happen Later. What Causes Precession and Other Orbital Changes. Apsidal Precession (Perihelion Precession) and Milankovitch Cycles.
When and how did life emerge on Earth? How did humanity develop a civilization? Is there other intelligent life out there?. Earth Formation. Beginnings of Life. Ozone Layer and Eukaryotes Show Up in the Proterozoic Eon. Biodiversity Flourishes in Phanerozoic Eon. First living things on land clarification. Human Evolution Overview. Understanding Calendar Notation. Correction Calendar Notation. Development of Agriculture and Writing. Firestick Farming. Collective Learning. Thomas Malthus and Population Growth. Land Productivity Limiting Human Population. Energy Inputs for Tilling a Hectare of Land. Random Predictions for 2060. Chronometric Revolution. Carbon 14 Dating 1. Carbon 14 Dating 2. Potassium-Argon (K-Ar) Dating. K-Ar Dating Calculation. Detectable Civilizations in our Galaxy 1. Detectable Civilizations in our Galaxy 2. Detectable Civilizations in our Galaxy 3. Detectable Civilizations in our Galaxy 4. Detectable Civilizations in our Galaxy 5. Earth Formation. Beginnings of Life. Ozone Layer and Eukaryotes Show Up in the Proterozoic Eon. Biodiversity Flourishes in Phanerozoic Eon. First living things on land clarification. Human Evolution Overview. Understanding Calendar Notation. Correction Calendar Notation. Development of Agriculture and Writing. Firestick Farming. Collective Learning. Thomas Malthus and Population Growth. Land Productivity Limiting Human Population. Energy Inputs for Tilling a Hectare of Land. Random Predictions for 2060. Chronometric Revolution. Carbon 14 Dating 1. Carbon 14 Dating 2. Potassium-Argon (K-Ar) Dating. K-Ar Dating Calculation. Detectable Civilizations in our Galaxy 1. Detectable Civilizations in our Galaxy 2. Detectable Civilizations in our Galaxy 3. Detectable Civilizations in our Galaxy 4. Detectable Civilizations in our Galaxy 5.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.