Online courses directory (2511)
This course is offered to graduates and includes topics such as mathematical models of systems from observations of their behavior; time series, state-space, and input-output models; model structures, parametrization, and identifiability; non-parametric methods; prediction error methods for parameter estimation, convergence, consistency, and asymptotic distribution; relations to maximum likelihood estimation; recursive estimation; relation to Kalman filters; structure determination; order estimation; Akaike criterion; bounded but unknown noise model; and robustness and practical issues.
This is a course on the fundamentals of probability geared towards first- or second-year graduate students who are interested in a rigorous development of the subject. The course covers most of the topics in 6.431 (sample space, random variables, expectations, transforms, Bernoulli and Poisson processes, finite Markov chains, limit theorems) but at a faster pace and in more depth. There are also a number of additional topics, such as language, terminology, and key results from measure theory; interchange of limits and expectations; multivariate Gaussian distributions; deeper understanding of conditional distributions and expectations.
This is a graduate-level introduction to mathematics of information theory. We will cover both classical and modern topics, including information entropy, lossless data compression, binary hypothesis testing, channel coding, and lossy data compression.
This is an advanced graduate course on quantum computation and quantum information, for which prior knowledge of quantum mechanics is required. Topics include quantum computation, advanced quantum error correction codes, fault tolerance, quantum algorithms beyond factoring, properties of quantum entanglement, and quantum protocols and communication complexity.
The course serves as an introduction to the theory and practice behind many of today's communications systems. 6.450 forms the first of a two-course sequence on digital communication. The second class, 6.451 Principles of Digital Communication II, is offered in the spring.
Topics covered include: digital communications at the block diagram level, data compression, Lempel-Ziv algorithm, scalar and vector quantization, sampling and aliasing, the Nyquist criterion, PAM and QAM modulation, signal constellations, finite-energy waveform spaces, detection, and modeling and system design for wireless communication.
The reading and writing in this course will focus on the art of self-narrative or autobiographical writing. Such writing can be crafted in the form of a longer autobiography or of separate, shorter autobiographically-inspired essays. The various forms of autobiographical narrative can both reflect on personal experience and comment on larger issues in society.
This course explores, through reading and writing, what it means to construct a sense of self-and a life narrative-in relation to the larger social world of family and friends, education, media, work, and community. What does it mean to see ourselves as embodying particular ethical values or belonging to a certain ethnic, racial, national or religious group(s)? How do we imagine ourselves within larger "family narrative(s)" and friendship groups? In what ways do we view our identities as connected to and expressed by our educational and work experiences, including experiences at MIT? How do we see ourselves as shaping and shaped by the popular media culture of our society? How do we think about our ethical and social responsibility to our friends, families and communities (large and small)? Readings will include autobiographically-inspired nonfiction and fiction.
6.453 Quantum Optical Communication is one of a collection of MIT classes that deals with aspects of an emerging field known as quantum information science. This course covers Quantum Optics, Single-Mode and Two-Mode Quantum Systems, Multi-Mode Quantum Systems, Nonlinear Optics, and Quantum System Theory.
The wars in Iraq and Syria have changed the course of international relations in the 21st century. During these conflicts, hundreds of thousands have died and millions have been displaced. After 13 years, these conflicts continue with no end in sight. The central question of this course is: How do political science theories and methods help us understand the course of these wars? In this course, you will answer this question by integrating three elements: theory, data/description, and application of theory to data/description. The primary goal of this course is to bolster students' skills in using various social science methods to explain important variations in violent conflict.
6.541J surveys the structural properties of natural languages, with special emphasis on the sound pattern. Topics covered include: representation of the lexicon; physiology of speech production; articulatory phonetics; acoustical theory of speech production; acoustical and articulatory descriptions of phonetic features and of prosodic aspects of speech; perception of speech; models of lexical access and of speech production and planning; and applications to recognition and generation of speech by machine, and to the study of speech disorders.
This course examines electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Topics covered include: electromagnetic forces, force densities, and stress tensors, including magnetization and polarization; thermodynamics of electromagnetic fields, equations of motion, and energy conservation; applications to synchronous, induction, and commutator machines; sensors and transducers; microelectromechanical systems; propagation and stability of electromechanical waves; and charge transport phenomena.
Acknowledgments
The instructor would like to thank Thomas Larsen and Matthew Pegler for transcribing into LaTeX the homework problems, homework solutions, and exam solutions.
This course focuses on laws, approximations and relations of continuum electromechanics. Topics include mechanical and electromechanical transfer relations, statics and dynamics of electromechanical systems having a static equilibrium, electromechanical flows, and field coupling with thermal and molecular diffusion. Also covered are electrokinetics, streaming interactions, application to materials processing, magnetohydrodynamic and electrohydrodynamic pumps and generators, ferrohydrodynamics, physiochemical systems, heat transfer, continuum feedback control, electron beam devices, and plasma dynamics.
Acknowledgements
The instructor would like to thank Xuancheng Shao and Anyang Hou for transcribing into LaTeX the problem set solutions and exam solutions, respectively.
The plasma state dominates the visible universe, and is important in fields as diverse as Astrophysics and Controlled Fusion. Plasma is often referred to as "the fourth state of matter." This course introduces the study of the nature and behavior of plasma. A variety of models to describe plasma behavior are presented.
This course teaches the principles and analysis of electromechanical systems. Students will develop analytical techniques for predicting device and system interaction characteristics as well as learn to design major classes of electric machines. Problems used in the course are intended to strengthen understanding of the phenomena and interactions in electromechanics, and include examples from current research.
This course explores the detection and measurement of radio and optical signals encountered in communications, astronomy, remote sensing, instrumentation, and radar. Topics covered include: statistical analysis of signal processing systems, including radiometers, spectrometers, interferometers, and digital correlation systems; matched filters and ambiguity functions; communications channel performance; measurement of random electromagnetic fields, angular filtering properties of antennas, interferometers, and aperture synthesis systems; and radiative transfer and parameter estimation.
6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points.
Acknowledgments
Prof. Jesús del Alamo would like to thank Prof. Harry Tuller for his support of and help in teaching the course.
This course examines classical and quantum models of electrons and lattice vibrations in solids, emphasizing physical models for elastic properties, electronic transport, and heat capacity. Topics covered include: crystal lattices, electronic energy band structures, phonon dispersion relatons, effective mass theorem, semiclassical equations of motion, and impurity states in semiconductors, band structure and transport properties of selected semiconductors, and connection of quantum theory of solids with quasifermi levels and Boltzmann transport used in device modeling.
6.777J / 2.372J is an introduction to microsystem design. Topics covered include: material properties, microfabrication technologies, structural behavior, sensing methods, fluid flow, microscale transport, noise, and amplifiers feedback systems. Student teams design microsystems (sensors, actuators, and sensing/control systems) of a variety of types, (e.g., optical MEMS, bioMEMS, inertial sensors) to meet a set of performance specifications (e.g., sensitivity, signal-to-noise) using a realistic microfabrication process. There is an emphasis on modeling and simulation in the design process. Prior fabrication experience is desirable. The course is worth 4 Engineering Design Points.
This course explores statistical modeling and control in manufacturing processes. Topics include the use of experimental design and response surface modeling to understand manufacturing process physics, as well as defect and parametric yield modeling and optimization. Various forms of process control, including statistical process control, run by run and adaptive control, and real-time feedback control, are covered. Application contexts include semiconductor manufacturing, conventional metal and polymer processing, and emerging micro-nano manufacturing processes.
Machine Vision provides an intensive introduction to the process of generating a symbolic description of an environment from an image. Lectures describe the physics of image formation, motion vision, and recovering shapes from shading. Binary image processing and filtering are presented as preprocessing steps. Further topics include photogrammetry, object representation alignment, analog VLSI and computational vision. Applications to robotics and intelligent machine interaction are discussed.
This course is an introduction to computational theories of human cognition. Drawing on formal models from classic and contemporary artificial intelligence, students will explore fundamental issues in human knowledge representation, inductive learning and reasoning. What are the forms that our knowledge of the world takes? What are the inductive principles that allow us to acquire new knowledge from the interaction of prior knowledge with observed data? What kinds of data must be available to human learners, and what kinds of innate knowledge (if any) must they have?
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.