Online courses directory (2511)
Introduction to the linguistic study of language pathology, concentrating on experimental approaches and theoretical explanations. Discussion of Specific Language Impairment, autism, Down syndrome, Williams syndrome, normal aging, Parkinson's disease, Alzheimer's disease, hemispherectomy and aphasia. Focuses on the comparison of linguistic abilities among these syndromes, while drawing clear comparisons with first and second language acquisition. Topics include the lexicon, morphology, syntax, semantics and pragmatics. Relates the lost linguistic abilities in these syndromes to properties of the brain.
Covers the major results in the study of first language acquisition concentrating on the development of linguistic structure, including sentence structure and morphology. Universal aspects of development are discussed, as well as a variety of cross-linguistic phenomena. Theories of language learning are considered, including parameter-setting and maturation.
This course covers central topics in language processing, including: the structure of language; sentence, discourse, and morphological processing; storage and access of words in the mental dictionary; speech processing; the relationship between the computational resources available in working memory and the language processing mechanism; and ambiguity resolution. The course also considers computational modeling, including connectionist models; the relationship between language and thought; and issues in language acquisition including critical period phenomena, the acquisition of speech, and the acquisition of words. Experimental methodologies such as self-paced reading, eye-tracking, cross-modal priming, and neural imaging methods are also examined.
9.63 teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and hands-on experimental exercises and requires an independent experimental project. Some experience in programming is desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments. A fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports.
This undergraduate course is designed to introduce students to cognitive processes. The broad range of topics covers each of the areas in the field of cognition, and presents the current thinking in this discipline. As an introduction to human information processing and learning, the topics include the nature of mental representation and processing, the architecture of memory, pattern recognition, attention, imagery and mental codes, concepts and prototypes, reasoning and problem solving.
Provides a comprehensive introduction to key issues and findings in object recognition in experimental, neural, computational, and applied domains. Emphasizes the problem of representation, exploring the issue of how 3-D objects should be encoded so as to efficiently recognize them from 2-D images. Second half focuses on face recognition, an ecologically important instance of the general object recognition problem. Describes experimental studies of human face recognition performance and recent attempts to mimic this ability in artificial computational systems.
Advances in cognitive science have resolved, clarified, and sometimes complicated some of the great questions of Western philosophy: what is the structure of the world and how do we come to know it; does everyone represent the world the same way; what is the best way for us to act in the world. Specific topics include color, objects, number, categories, similarity, inductive inference, space, time, causality, reasoning, decision-making, morality and consciousness. Readings and discussion include a brief philosophical history of each topic and focus on advances in cognitive and developmental psychology, computation, neuroscience, and related fields. At least one subject in cognitive science, psychology, philosophy, linguistics, or artificial intelligence is required. An additional project is required for graduate credit.
We are now at an unprecedented point in the field of neuroscience: We can watch the human brain in action as it sees, thinks, decides, reads, and remembers. Functional magnetic resonance imaging (fMRI) is the only method that enables us to monitor local neural activity in the normal human brain in a noninvasive fashion and with good spatial resolution. A large number of far-reaching and fundamental questions about the human mind and brain can now be answered using straightforward applications of this technology. This is particularly true in the area of high-level vision, the study of how we interpret and use visual information including object recognition, mental imagery, visual attention, perceptual awareness, visually guided action, and visual memory.
The goals of this course are to help students become savvy and critical readers of the current neuroimaging literature, to understand the strengths and weaknesses of the technique, and to design their own cutting-edge, theoretically motivated studies. Students will read, present to the class, and critique recently published neuroimaging articles, as well as write detailed proposals for experiments of their own. Lectures will cover the theoretical background on some of the major areas in high-level vision, as well as an overview of what fMRI has taught us and can in future teach us about each of these topics. Lectures and discussions will also cover fMRI methods and experimental design. A prior course in statistics and at least one course in perception or cognition are required.
We will examine current research and theory regarding the validity and utility of commonly accepted gender differences in many realms. Topics include: gender differences in cognitive abilities; the social construction of gender; developmental, family, educational and medical influences; and political and economic forces.
This course is an introduction to cognitive development focusing on children's understanding of objects, agents, and causality. It develops a critical understanding of experimental design. The course discusses how developmental research might address philosophical questions about the origins of knowledge, appearance and reality, and the problem of other minds. It provides instruction and practice in written communication as needed for cognitive science research (including critical reviews of journal papers, a literature review and an original research proposal), as well as instruction and practice in oral communication in the form of a poster presentation of a journal paper.
Memory is not a unitary faculty, but rather consists of multiple forms of learning that differ in their operating characteristics and neurobiological substrates. This seminar will consider current debates regarding the cognitive and neural architectures of memory, specifically focusing on recent efforts to address these controversies through application of functional neuroimaging (primarily fMRI and PET).
Probability theory captures a number of essential characteristics of human cognition, including aspects of perception, reasoning, belief revision, and learning. Expressions of degree of belief were used in language long before people began codifying the laws of probability theory. This course explores the history and debates over codifying the laws of probability, how probability theory applies to specific cognitive processes, how it relates to the human understanding of causality, and how new computational approaches to causal modeling provide a framework for understanding human probabilistic reasoning.
This class is suitable for advanced undergraduates or graduate students specializing in cognitive science, artificial intelligence, and related fields.
This seminar focuses on the cognitive science of moral reasoning. Philosophers debate how we decide which moral actions are permissible. Is it permissible to take one human life in order to save others? We have powerful and surprisingly rich and subtle intuitions to such questions.
In this class, you will learn how intuitions can be studied using formal analytical paradigms and behavioral experiments. Thursday evening, meet to learn about recent advances in theories of moral reasoning. Overnight, formulate a hypothesis about the structure of moral reasoning and design a questionnaire-based experiment to test this. Friday, present and select 1-2 proposals and collect data; we will then reconvene to analyze and discuss results and implications for the structure of the moral mind.
This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.
This subject will be an intensive introduction to neuroanatomy, involving lectures, demonstrations, and hands-on laboratories, including a brain dissection. The course will not assume any prior knowledge of neuroanatomy, though some general knowledge of brain structures will be helpful.
This class is the second half of an intensive survey of cognitive science for first-year graduate students. Topics include visual perception, language, memory, cognitive architecture, learning, reasoning, decision-making, and cognitive development. Topics covered are from behavioral, computational, and neural perspectives.
This comprehensive course on the visual system is designed to ground future researchers in the field of visual science and to provide scientists with an excellent basis for using the visual system as a model in research. In this graduate seminar, anatomical, neurophysiological, imaging and behavioral research is examined in an attempt to gain a better understanding of how information is processed in the primate visual system.
An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds.
Surveys the literature on the cognitive and neural organization of human memory and learning. Includes consideration of working memory and executive control, episodic and semantic memory, and implicit forms of memory. Emphasizes integration of cognitive theory with recent insights from functional neuroimaging (e.g., fMRI and PET).
The course includes survey and special topics designed for graduate students in the brain and cognitive sciences. It emphasizes ethological studies of natural behavior patterns and their analysis in laboratory work, with contributions from field biology (mammology, primatology), sociobiology, and comparative psychology. It stresses mammalian behavior but also includes major contributions from studies of other vertebrates and of invertebrates. It covers some applications of animal-behavior knowledge to neuropsychology and behavioral pharmacology.
Current research on the evolution and development of cognition and affect, including intuitive physics, biology, and psychology, language, emotions, sexuality, and social relations.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.