|
The motion of falling leaves or small particles diffusing in a fluid is highly stochastic in nature. Therefore, such motions must be modeled as stochastic processes, for which exact predictions are no longer possible. This is in stark contrast to the deterministic motion of planets and stars, which can be perfectly predicted using celestial mechanics. This course is an introduction to stochastic processes through numerical simulations, with a focus on the proper data analysis needed to interpret the results. We will use the Jupyter (iPython) notebook as our programming environment. It is freely available for Windows, Mac, and Linux through the Anaconda Python Distribution. The students will first learn the basic theories of stochastic processes. Then, they will use these theories to develop their own python codes to perform numerical simulations of small particles diffusing in a fluid. Finally, they will analyze the simulation data according to the theories presented at the beginning of course. At the end of the course, we will analyze the dynamical data of more complicated systems, such as financial markets or meteorological data, using the basic theory of stochastic processes. Categories:
Starts :
2017-03-30 |
|
AlternativesIf you know any alternatives, please let us know. PrerequisitesIf you can suggest any prerequisite, please let us know. Certification Exams-- there are no exams to get certification after this course --If your company does certification for those who completed this course then register your company as certification vendor and add your exams to the Exams Directory. |
Let us know when you did the course Stochastic Processes: Data Analysis and Computer Simulation.
Add the course Stochastic Processes: Data Analysis and Computer Simulation to My Personal Education Path.
Successfully added to your path.
View your pathSelect what exam to connect to the course. The course will be displayed on the exam page in the list of courses supported for certification with the exam.