Plasma Transport Theory
11 votes
Free
|
||
![]() |
This course describes the processes by which mass, momentum, and energy are transported in plasmas, with special reference to magnetic confinement fusion applications. The Fokker-Planck collision operator and its limiting forms, as well as collisional relaxation and equilibrium, are considered in detail. Special applications include a Lorentz gas, Brownian motion, alpha particles, and runaway electrons. The Braginskii formulation of classical collisional transport in general geometry based on the Fokker-Planck equation is presented. Neoclassical transport in tokamaks, which is sensitive to the details of the magnetic geometry, is considered in the high (Pfirsch-Schluter), low (banana) and intermediate (plateau) regimes of collisionality. Categories:
Physical Sciences
Starts :
2003-09-01 |
|
AlternativesIf you know any alternatives, please let us know. PrerequisitesIf you can suggest any prerequisite, please let us know. Certification Exams-- there are no exams to get certification after this course --If your company does certification for those who completed this course then register your company as certification vendor and add your exams to the Exams Directory. |
Let us know when you did the course Plasma Transport Theory.

Add the course Plasma Transport Theory to My Personal Education Path.

Select what exam to connect to the course. The course will be displayed on the exam page in the list of courses supported for certification with the exam.
