Courses tagged with "Information environments" (1105)
Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed.
This innovative, trans-faculty subject teaches how information technologies (IT) are reshaping and redefining the health care marketplace through improved economies of scale, greater technical efficiencies in the delivery of care to patients, advanced tools for patient education and self-care, network integrated decision support tools for clinicians, and the emergence of e-commerce in health care. Student tutorials provide an opportunity for interactive discussion. Interdisciplinary project teams comprised of Harvard and MIT graduate students in medicine, business, law, education, engineering, computer science, public health, and government collaborate to design innovative IT applications. Projects are presented during the final class.
Starting in Spring 2010, this course will be titled Enabling Technology Innovation in Healthcare and the Life Sciences.
This innovative, trans-faculty subject teaches how information technologies (IT) are reshaping and redefining the health care marketplace through improved economies of scale, greater technical efficiencies in the delivery of care to patients, advanced tools for patient education and self-care, network integrated decision support tools for clinicians, and the emergence of e-commerce in health care. Student tutorials provide an opportunity for interactive discussion. Interdisciplinary project teams comprised of Harvard and MIT graduate students in medicine, business, law, education, engineering, computer science, public health, and government collaborate to design innovative IT applications. Projects are presented during the final class.
Starting in Spring 2010, this course will be titled Enabling Technology Innovation in Healthcare and the Life Sciences.
This is a graduate-level introduction to mathematics of information theory. We will cover both classical and modern topics, including information entropy, lossless data compression, binary hypothesis testing, channel coding, and lossy data compression.
This seminar examines efforts in developing and advanced nations and regions to create, finance, and regulate infrastructure and energy technologies from a variety of methodological and disciplinary perspectives. It is conducted with intensive in-class discussions and debates.
This seminar has three purposes. One, it inquires into the causes of military innovation by examining a number of the most outstanding historical cases. Two, it views military innovations through the lens of organization theory to develop generalizations about the innovation process within militaries. Three, it uses the empirical study of military innovations as a way to examine the strength and credibility of hypotheses that organization theorists have generated about innovation in non-military organizations.
15.616 is an introduction to business law which covers the fundamentals, including contracts, liability, regulation, employment, and corporations, with an in-depth treatment of the legal issues relating to breakthrough technologies, including the legal framework of R&D, the commercialization of new high-technology products in start-ups and mature companies, and the liability and regulatory implications of new products and innovative business models. There is extensive attention to national and international intellectual property protection and strategies. Examples are drawn from many industries, including information technology, communications, and life sciences.
Note: This course used to be numbered 15.648.
This subject explores the varied nature and practice of computation in design. We will view computation and design broadly. Computation will include both work done on the computer (digital computing) and by-hand. Design will include both the process of making designs and artifacts, as well as the designs and artifacts themselves. The aim of the course is to develop a view of computation and design beyond the specifics of techniques and tools, and a critical, self-awareness of our own approaches and metaphors for computation and design.
The course is a comprehensive introduction to the theory, algorithms and applications of integer optimization and is organized in four parts: formulations and relaxations, algebra and geometry of integer optimization, algorithms for integer optimization, and extensions of integer optimization.
This course emphasizes concepts and techniques for solving integral equations from an applied mathematics perspective. Material is selected from the following topics: Volterra and Fredholm equations, Fredholm theory, the Hilbert-Schmidt theorem; Wiener-Hopf Method; Wiener-Hopf Method and partial differential equations; the Hilbert Problem and singular integral equations of Cauchy type; inverse scattering transform; and group theory. Examples are taken from fluid and solid mechanics, acoustics, quantum mechanics, and other applications.
6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points.
Acknowledgments
Prof. Jesús del Alamo would like to thank Prof. Harry Tuller for his support of and help in teaching the course.
This team-taught subject is for doctoral students working on emerging technologies at the interface of technology, policy and societal issues. It integrates concepts of research strategy and design from a variety of disciplines. The class addresses problem identification and formulation of research topics, the role of qualitative and quantitative research methods, and the use of various data collection techniques. Coursework focuses on students' thesis proposals, faculty-student study panels, critical evaluation of research design, and ethical issues in conducting research and gathering data.
The strategic importance of information technology is now widely accepted. It has also become increasingly clear that the identification of strategic applications alone does not result in success for an organization. A careful coordination of strategic applications, information technologies, and organizational structures must be made to attain success. This course addresses strategic, technological, and organizational connectivity issues to support effective and meaningful integration of information and systems. This course is especially relevant to those who wish to effectively exploit information technology and create new business processes and opportunities.
This class addresses some of the important issues involved with the planning, development, and implementation of lean enterprises. People, technology, process, and management dimensions of an effective lean manufacturing company are considered in a unified framework. Particular emphasis is placed on the integration of these dimensions across the entire enterprise, including product development, production, and the extended supply chain. Analysis tools as well as future trends and directions are explored. A team project is a key component of this subject.
This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.
The course will start with an overview of the central and peripheral nervous systems (CNS and PNS), the development of their structure and major divisions. The major functional components of the CNS will then be reviewed individually. Topography, functional distribution of nerve cell bodies, ascending and descending tracts in the spinal cord. Brainstem organization and functional components, including cranial nerve nuclei, ascending / descending pathways, amine-containing cells, structure and information flow in the cerebellar and vestibular systems. Distribution of the cranial nerves, resolution of their skeletal and branchial arch components. Functional divisions of the Diencephalon and Telencephalon. The course will then continue with how these various CNS pieces and parts work together. Motor systems, motor neurons and motor units, medial and lateral pathways, cortical versus cerebellar systems and their functional integration. The sensory systems, visual, auditory and somatosensory. Olfaction will be covered in the context of the limbic system, which will also include autonomic control and the Papez circuit. To conclude, functional organization and information flow in the neocortex will be discussed.
This graduate-level course covers fluid systems dominated by the influence of interfacial tension. The roles of curvature pressure and Marangoni stress are elucidated in a variety of fluid systems. Particular attention is given to drops and bubbles, soap films and minimal surfaces, wetting phenomena, water-repellency, surfactants, Marangoni flows, capillary origami and contact line dynamics.
This course studies the fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Topics include fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, with reference to engine power, efficiency, and emissions. Students examine the design features and operating characteristics of different types of internal combustion engines: spark-ignition, diesel, stratified-charge, and mixed-cycle engines. Class includes lab project in the Engine Laboratory.
In 16.540 we address fluid dynamic phenomena of interest in internal flow situations. The emphasis tends to be on problems that arise in air breathing propulsion, but the application of the concepts covered is more general, and the course is wider in scope, than turbomachines (in spite of the title). Stated more directly, the focus is on the fluid mechanic principles that determine the behavior of a broad class of industrial devices. The material can therefore be characterized, only partly tongue in cheek, as "industrial strength fluid mechanics done in a rigorous manner".
This course covers, with a focus on both theory and empirics, advanced topics in international trade (as well as inter-regional trade and economic geography.) It includes the study of positive issues, such as: Why do countries trade? What goods do countries trade? What are the implications of openness for the location of production, industries, occupations, and innovative activity? And, what impedes trade and why do some countries deliberately erect policy impediments to trade? The course also concerns normative issues, such as: Is trade openness beneficial to a representative agent? And, are there winners and losers from trade and if so, can we identify them? Throughout, these issues are approached in neoclassical settings as well as those with market failures, at the industry-level as well as the firm-level, and in the presence of both mobile and immobile factors (e.g., FDI, offshoring of tasks, multinational firms and immigration).
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.