Courses tagged with "Nutrition" (6413)
Learn how advances in biomedicine hold the potential to revolutionize drug development, drug treatments, and disease prevention: where are we now, and what does the future hold? This course is intended for healthcare providers 5+ years out of training--a lot has changed!! Other providers, medical/health sciences students, and members of the public may also be interested.
In the PH525 case studies, we will explore the data analysis of an experimental protocol in depth, using various open source software, including R and Bioconductor. We will explain how to start with raw data, and perform the standard processing and normalization steps to get to the point where one can investigate relevant biological questions. Throughout the case studies, we will make use of exploratory plots to get a general overview of the shape of the data and the result of the experiment.
We will learn the basic steps in analyzing DNA methylation data, including reading the raw data, normalization, and finding regions of differential methylation across multiple samples.
This class was supported in part by NIH grant R25GM114818.
This course is part of a larger set of 8 total courses running Self-Paced through September 15th, 2015:
PH525.1x: Statistics and R for the Life Sciences
PH525.2x: Introduction to Linear Models and Matrix Algebra
PH525.3x: Advanced Statistics for the Life Sciences
PH525.4x: Introduction to Bioconductor
PH525.5x: Case study: RNA-seq data analysis
PH525.6x: Case study: Variant Discovery and Genotyping
PH525.7x: Case study: ChIP-seq data analysis
PH525.8x: Case study: DNA methylation data analysis
HarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. HarvardX will take appropriate corrective action in response to violations of the edX honor code, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs.
HarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our research statement to learn more.
Harvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact harvardx@harvard.edu and/or report your experience through the edX contact form.
Learn to frame and address health-related questions using modern biostatistics ideas and methods.
The goal of this class is to prove that category theory is a powerful language for understanding and formalizing common scientific models. The power of the language will be tested by its ability to penetrate into taken-for-granted ideas, either by exposing existing weaknesses or flaws in our understanding, or by highlighting hidden commonalities across scientific fields.
The causes and prevention of interstate war are the central topics of this course. The course goal is to discover and assess the means to prevent or control war. Hence we focus on manipulable or controllable war-causes. The topics covered include the dilemmas, misperceptions, crimes and blunders that caused wars of the past; the origins of these and other war-causes; the possible causes of wars of the future; and possible means to prevent such wars, including short-term policy steps and more utopian schemes.
The historical cases covered include the Peloponnesian and Seven Years wars, World War I, World War II, Korea, the Arab-Israel conflict, and the U.S.-Iraq and U.S. al-Queda wars.
This is an undergraduate course, but it is open to graduate students.
What causes armed conflict in the world today? This course examines current thinking on this critical question in world affairs.
This course explores the causes of modern war with a focus on preventable causes. Course readings cover theoretical, historical, and methodological topics. Major theories of war are explored and assessed in the first few weeks of the class, asking at each stage "are these good theories?" and "how could they be tested?" Basic social scientific inference -- what are theories? What are good theories? How should theories be framed and tested? -- and case study methodology are also discussed. The second half of the course explores the history of the outbreak of some major wars. We use these cases as raw material for case studies, asking "if these episodes were the subject of case studies, how should those studies be performed, and what could be learned from them?"
Food is such an important part of everyone's daily lives. We want to celebrate the nutrition, health, and well-being that it can provide. We are going to travel around the globe, exploring foods that have shown to keep people healthy, often for generations. Then we will experiment in our kitchens to include these great foods in our recipes, meals, and lifestyles.
This course explores the major areas of cellular and molecular neurobiology, including excitable cells and membranes, ion channels and receptors, synaptic transmission, cell-type determination, axon guidance, neuronal cell biology, neurotrophin signaling and cell survival, synapse formation and neural plasticity. Material includes lectures and exams, and involves presentation and discussion of primary literature. It focuses on major concepts and recent advances in experimental neuroscience.
This course deals with the biology of cells of higher organisms: The structure, function, and biosynthesis of cellular membranes and organelles; cell growth and oncogenic transformation; transport, receptors, and cell signaling; the cytoskeleton, the extracellular matrix, and cell movements; chromatin structure and RNA synthesis.
The cell is a powerful case study to help us explore the functional logic of living systems. All organisms, from single-celled algae to complex multicellular organisms like us, are made up of cells. In this course, you will learn the how and why of biology by exploring the function of the molecular components of cells, and how these cellular components are organized in a complex hierarchy.
This course is designed to explore the fundamentals of cell biology. The overarching goal is for learners to understand, from a human-centered perspective, that cells are evolving ensembles of macromolecules that in turn form complex communities in tissues, organs, and multicellular organisms.
We will focus, in particular, on the mitochondrion, the organelle that powers the cell. In this context, we will look at the processes of cell metabolism. Finally, we will examine the F1F0 ATP synthase, the molecular machine that is responsible for the synthesis of most of the ATP that your cells require to do work. To underscore the importance of cell biology to our lives, we will address questions of development and disease and implications of science in society.
By the end of four weeks, we hope learners will have a deep intuition for the functional logic of a cell. Together we will ask how do things work within a cell, why do they work the way they do, and how are we impacted?
Join us as we explore the extraordinary and wonderfully dynamic world of the cell.
HarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. HarvardX will take appropriate corrective action in response to violations of the edX honor code, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs.
HarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our research statement to learn more.
Harvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact harvardx@harvard.eduand/or report your experience through the edX contact form.
The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.
This course is sponsored by Gibco® and designed to prepare you for their Cell Culture Basics Certification. Learn the basic techniques for effective, reproducible laboratory cell culture, including optimized procedures and products that will help you get the consistency your lab work demands.
Mechanical forces play a decisive role during development of tissues and organs, during remodeling following injury as well as in normal function. A stress field influences cell function primarily through deformation of the extracellular matrix to which cells are attached. Deformed cells express different biosynthetic activity relative to undeformed cells. The unit cell process paradigm combined with topics in connective tissue mechanics form the basis for discussions of several topics from cell biology, physiology, and medicine.
Life as an emergent property of networks of chemical reactions involving proteins and nucleic acids. Mathematical theories of metabolism, gene regulation, signal transduction, chemotaxis, excitability, motility, mitosis, development, and immunity. Applications to directed molecular evolution, DNA computing, and metabolic and genetic engineering.
This course covers cells and tissues of the immune system, lymphocyte development, the structure and function of antigen receptors, the cell biology of antigen processing and presentation, including molecular structure and assembly of MHC molecules, the biology of cytokines, leukocyte-endothelial interactions, and the pathogenesis of immunologically mediated diseases. The course is structured as a series of lectures and tutorials in which clinical cases are discussed with faculty tutors.
Lecturers
Frederick W. Alt
Marcus Altfeld
Paul Anderson
Jon C. Aster
Hugh Auchincloss
Steven P. Balk
Samuel M. Behar
Richard S. Blumberg
Francisco Bonilla
Bobby Cherayil
Benjamin Davis
David Hafler
Nir Harcohen
Bruce Horwitz
David M. Lee
Andrew Lichtman
Diane Mathis
Richard Mitchell
Hidde Ploegh
Emmett Schmidt
Arlene Sharpe
Megan Sykes
Shannon Turley
Dale T. Umetsu
Ulrich von Andrian
Bruce Walker
Kai Wucherpfennig
Ramnik Xavier
Sarah Henrickson