Error occured ! We are notified and will try and resolve this as soon as possible.
WARNING! [2] file_put_contents(/home/gelembjuk/domains/myeducationpath.com/app/../html/cache/memory/course_6121_0_e086762d743c0218beb85ea6e1b456cae.txt): Failed to open stream: No such file or directory . Line 75 in file /home/gelembjuk/domains/myeducationpath.com/html/include/class.cache.php. Continue execution. 2932608; index.php; 3.142.166.129; GET; url=courses/6121/calculus-line-integrals-and-green-39-s-theorem.htm&; ; Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com); ; Executon time: 0 MyEducationPath.com :: Khan Academy : Calculus: Line integrals and Green's theorem

Calculus: Line integrals and Green's theorem

49 votes
Free Closed [?]
Calculus: Line integrals and Green's theorem

Line integral of scalar and vector-valued functions. Green's theorem and 2-D divergence theorem.
Introduction to the Line Integral. Line Integral Example 1. Line Integral Example 2 (part 1). Line Integral Example 2 (part 2). Position Vector Valued Functions. Derivative of a position vector valued function. Differential of a vector valued function. Vector valued function derivative example. Line Integrals and Vector Fields. Using a line integral to find the work done by a vector field example. Parametrization of a Reverse Path. Scalar Field Line Integral Independent of Path Direction. Vector Field Line Integrals Dependent on Path Direction. Path Independence for Line Integrals. Closed Curve Line Integrals of Conservative Vector Fields. Example of Closed Line Integral of Conservative Field. Second Example of Line Integral of Conservative Vector Field. Green's Theorem Proof Part 1. Green's Theorem Proof (part 2). Green's Theorem Example 1. Green's Theorem Example 2. Constructing a unit normal vector to a curve. 2 D Divergence Theorem. Conceptual clarification for 2-D Divergence Theorem. Introduction to the Line Integral. Line Integral Example 1. Line Integral Example 2 (part 1). Line Integral Example 2 (part 2). Position Vector Valued Functions. Derivative of a position vector valued function. Differential of a vector valued function. Vector valued function derivative example. Line Integrals and Vector Fields. Using a line integral to find the work done by a vector field example. Parametrization of a Reverse Path. Scalar Field Line Integral Independent of Path Direction. Vector Field Line Integrals Dependent on Path Direction. Path Independence for Line Integrals. Closed Curve Line Integrals of Conservative Vector Fields. Example of Closed Line Integral of Conservative Field. Second Example of Line Integral of Conservative Vector Field. Green's Theorem Proof Part 1. Green's Theorem Proof (part 2). Green's Theorem Example 1. Green's Theorem Example 2. Constructing a unit normal vector to a curve. 2 D Divergence Theorem. Conceptual clarification for 2-D Divergence Theorem.

Categories: Mathematics

Comments

Alternatives

-- no alternatives found for the course --
If you know any alternatives, please let us know.

Prerequisites

-- no prerequsites found for the course --
If you can suggest any prerequisite, please let us know.

Paths

No Paths inclusing the course. You can build and share a path with this course included.

Certification Exams

-- there are no exams to get certification after this course --
If your company does certification for those who completed this course then register your company as certification vendor and add your exams to the Exams Directory.

Let us know when you did the course Calculus: Line integrals and Green's theorem.

Started on: Completed on:
Your grade (if any):
Comments:

Add the course Calculus: Line integrals and Green's theorem to My Personal Education Path.

Start the course on:
Duration of study:
Notes:

Successfully added to your path.

View your path

Select what exam to connect to the course. The course will be displayed on the exam page in the list of courses supported for certification with the exam.


Notes about how the exam certifies students of the course (optional):