Courses tagged with "Information environments" (1105)
This course will conduct a comparative study of the grand strategies of the great powers (Britain, France, Germany and Russia) competing for mastery of Europe from the late nineteenth to the mid-twentieth century. Grand strategy is the collection of political and military means and ends with which a state attempts to achieve security. We will examine strategic developments in the years preceding World Wars I and II, and how those developments played themselves out in these wars. The following questions will guide the inquiry: What is grand strategy and what are its critical aspects? What recurring factors have exerted the greatest influence on the strategies of the states selected for study? How may the quality of a grand strategy be judged? What consequences seem to follow from grand strategies of different types? A second theme of the course is methodological. We will pay close attention to how comparative historical case studies are conducted.
This course focuses on the land use-transportation "interaction space" in metropolitan settings. The course aims to develop an understanding of relevant theories and analytical techniques, through the exploration of various cases drawn from different parts of the world. The course begins with an overview of the role of transportation in patterns of urban development and metropolitan growth. It introduces the concept of accessibility and related issues of individual and firm travel demand. Later in the semester, students will explore the influence of the metropolitan built environment on travel behavior and the role of transportation on metropolitan land development. The course will conclude with an examination of the implications of the land use-transportation interaction space for metropolitan futures, and our abilities to forecast them.
This graduate seminar has two main goals: to explore the main theoretical and methodological approaches to the study of contemporary Chinese politics; and to relate those approches to broader trends in the field of comparative politics. What has the study of China contributed to the field of comparative politics, and vice versa? What are the most effective ways to integrate area studies, broader comparative approaches, and theory? Seminar presumes a basic understanding of the history and politics of contemporary China.
This course focuses on the complexities associated with security and sustainability of states in international relations. Covering aspects of theory, methods and empirical analysis, the course is in three parts, and each consists of seminar sessions focusing on specific topics.
This course aims to develop negotiation skills by active participation in a variety of negotiation settings, and a series of integrative bargaining cases between two and more than two parties over multiple issues. Ethical dilemmas in negotiation are discussed at various times throughout the course.
This course is offered to graduates and is a project-oriented course to teach new methodologies for designing multi-million-gate CMOS VLSI chips using high-level synthesis tools in conjunction with standard commercial EDA tools. The emphasis is on modular and robust designs, reusable modules, correctness by construction, architectural exploration, and meeting the area, timing, and power constraints within standard cell and FPGA frameworks.
This course outlines the physics, modeling, application, and technology of compound semiconductors (primarily III-Vs) in electronic, optoelectronic, and photonic devices and integrated circuits. Topics include: properties, preparation, and processing of compound semiconductors; theory and practice of heterojunctions, quantum structures, and pseudomorphic strained layers; metal-semiconductor field effect transistors (MESFETs); heterojunction field effect transistors (HFETs) and bipolar transistors (HBTs); photodiodes, vertical-and in-plane-cavity laser diodes, and other optoelectronic devices.
The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.
2.26 is a 6-unit Honors-level subject serving as the Mechanical Engineering department's sole course in compressible fluid dynamics. The prerequisites for this course are undergraduate courses in thermodynamics, fluid dynamics, and heat transfer.
The goal of this course is to lay out the fundamental concepts and results for the compressible flow of gases. Topics to be covered include: appropriate conservation laws; propagation of disturbances; isentropic flows; normal shock wave relations, oblique shock waves, weak and strong shocks, and shock wave structure; compressible flows in ducts with area changes, friction, or heat addition; heat transfer to high speed flows; unsteady compressible flows, Riemann invariants, and piston and shock tube problems; steady 2D supersonic flow, Prandtl-Meyer function; and self-similar compressible flows. The emphasis will be on physical understanding of the phenomena and basic analytical techniques.
6.844 is a graduate introduction to programming theory, logic of programming, and computability, with the programming language Scheme used to crystallize computability constructions and as an object of study itself. Topics covered include: programming and computability theory based on a term-rewriting, "substitution" model of computation by Scheme programs with side-effects; computation as algebraic manipulation: Scheme evaluation as algebraic manipulation and term rewriting theory; paradoxes from self-application and introduction to formal programming semantics; undecidability of the Halting Problem for Scheme; properties of recursively enumerable sets, leading to Incompleteness Theorems for Scheme equivalences; logic for program specification and verification; and Hilbert's Tenth Problem.
This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with current large-scale biological datasets.
This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with current large-scale biological datasets.
A computational camera attempts to digitally capture the essence of visual information by exploiting the synergistic combination of task-specific optics, illumination, sensors and processing. In this course we will study this emerging multi-disciplinary field at the intersection of signal processing, applied optics, computer graphics and vision, electronics, art, and online sharing through social networks. If novel cameras can be designed to sample light in radically new ways, then rich and useful forms of visual information may be recorded — beyond those present in traditional photographs. Furthermore, if computational process can be made aware of these novel imaging models, them the scene can be analyzed in higher dimensions and novel aesthetic renderings of the visual information can be synthesized.
We will discuss and play with thermal cameras, multi-spectral cameras, high-speed, and 3D range-sensing cameras and camera arrays. We will learn about opportunities in scientific and medical imaging, mobile-phone based photography, camera for HCI and sensors mimicking animal eyes. We will learn about the complete camera pipeline. In several hands-on projects we will build physical imaging prototypes and understand how each stage of the imaging process can be manipulated.
This class introduces design as a computational enterprise in which rules are developed to compose and describe architectural and other designs. The class covers topics such as shapes, shape arithmetic, symmetry, spatial relations, shape computations, and shape grammars. It focuses on the application of shape grammars in creative design, and teaches shape grammar fundamentals through in-class, hands-on exercises with abstract shape grammars. The class discusses issues related to practical applications of shape grammars.
Why has it been easier to develop a vaccine to eliminate polio than to control influenza or AIDS? Has there been natural selection for a 'language gene'? Why are there no animals with wheels? When does 'maximizing fitness' lead to evolutionary extinction? How are sex and parasites related? Why don't snakes eat grass? Why don't we have eyes in the back of our heads? How does modern genomics illustrate and challenge the field?
This course analyzes evolution from a computational, modeling, and engineering perspective. The course has extensive hands-on laboratory exercises in model-building and analyzing evolutionary data.
Why has it been easier to develop a vaccine to eliminate polio than to control influenza or AIDS? Has there been natural selection for a 'language gene'? Why are there no animals with wheels? When does 'maximizing fitness' lead to evolutionary extinction? How are sex and parasites related? Why don't snakes eat grass? Why don't we have eyes in the back of our heads? How does modern genomics illustrate and challenge the field?
This course analyzes evolution from a computational, modeling, and engineering perspective. The course has extensive hands-on laboratory exercises in model-building and analyzing evolutionary data.
Why has it been easier to develop a vaccine to eliminate polio than to control influenza or AIDS? Has there been natural selection for a 'language gene'? Why are there no animals with wheels? When does 'maximizing fitness' lead to evolutionary extinction? How are sex and parasites related? Why don't snakes eat grass? Why don't we have eyes in the back of our heads? How does modern genomics illustrate and challenge the field?
This course analyzes evolution from a computational, modeling, and engineering perspective. The course has extensive hands-on laboratory exercises in model-building and analyzing evolutionary data.
The course focuses on casting contemporary problems in systems biology and functional genomics in computational terms and providing appropriate tools and methods to solve them. Topics include genome structure and function, transcriptional regulation, and stem cell biology in particular; measurement technologies such as microarrays (expression, protein-DNA interactions, chromatin structure); statistical data analysis, predictive and causal inference, and experiment design. The emphasis is on coupling problem structures (biological questions) with appropriate computational approaches.
Topics in surface modeling: b-splines, non-uniform rational b-splines, physically based deformable surfaces, sweeps and generalized cylinders, offsets, blending and filleting surfaces. Non-linear solvers and intersection problems. Solid modeling: constructive solid geometry, boundary representation, non-manifold and mixed-dimension boundary representation models, octrees. Robustness of geometric computations. Interval methods. Finite and boundary element discretization methods for continuum mechanics problems. Scientific visualization. Variational geometry. Tolerances. Inspection methods. Feature representation and recognition. Shape interrogation for design, analysis, and manufacturing. Involves analytical and programming assignments.
This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.472J. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and this course was renumbered 2.158J.
16.225 is a graduate level course on Computational Mechanics of Materials. The primary focus of this course is on the teaching of state-of-the-art numerical methods for the analysis of the nonlinear continuum response of materials. The range of material behavior considered in this course includes: linear and finite deformation elasticity, inelasticity and dynamics. Numerical formulation and algorithms include: variational formulation and variational constitutive updates, finite element discretization, error estimation, constrained problems, time integration algorithms and convergence analysis. There is a strong emphasis on the (parallel) computer implementation of algorithms in programming assignments. The application to real engineering applications and problems in engineering science is stressed throughout the course.
Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.